論文の概要: QGeo: A Python package for calculating geodesic control functions for quantum computing
- arxiv url: http://arxiv.org/abs/2504.16157v1
- Date: Tue, 22 Apr 2025 18:00:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.879864
- Title: QGeo: A Python package for calculating geodesic control functions for quantum computing
- Title(参考訳): QGeo: 量子コンピューティングのための測地制御関数を計算するPythonパッケージ
- Authors: Sean T. Crowe, Joshua J. Leiter, John P. T. Stenger, Zachary L. Barvian, Joseph A. Diaz, Shoshana Krishel, Joanna N. Ptasinski, Daniel Gunlycke,
- Abstract要約: 本稿では,与えられたユニタリ変換を量子コンピュータ上で作成する際の困難を数値計算する新しいPythonパッケージを提案する。
実装する数値手順を提示し、議論する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new Python package that uses the established notion of geometric quantum complexity to numerically compute the difficulty associated with preparing a given unitary transformation on a quantum computer. The numerical procedure we implement is presented and discussed. Analyzed quantum circuits include: the quantum fourier transform for up to four qubits, a random circuit with depth 100, and a circuit for analyzing the evolution of a fermionic chain with several lattice sites. This package can be found for download at https://github.com/JAGDiaz/quantum-geodesics
- Abstract(参考訳): 本稿では、量子コンピュータ上で与えられたユニタリ変換を作成する際の困難を数値計算するために、幾何量子複雑性という確立された概念を用いたPythonパッケージを提案する。
実装する数値手順を提示し、議論する。
解析された量子回路は、最大4キュービットの量子フーリエ変換、深さ100のランダム回路、およびいくつかの格子部位を持つフェルミオン鎖の進化を分析する回路を含む。
このパッケージはhttps://github.com/JAGDiaz/quantum-geodesicsでダウンロードできる。
関連論文リスト
- Quantum-Chiplet: A Novel Python-Based Efficient and Scalable Design Methodology for Quantum Circuit Verification and Implementation [5.727672509269657]
本稿では,超並列量子計算解析を容易にする新しい量子表現(QPR)を提案する。
量子回路の検証には,階層型量子行動モデリング手法であるQuantum-Chipletを導入する。
量子振幅推定の例は、この手法が14キュービットのIBM Qiskitと比較して10倍以上のスピードアップで設計プロセスを大幅に改善することを示している。
論文 参考訳(メタデータ) (2025-03-13T05:12:41Z) - Data Complexity Measures for Quantum Circuits Architecture Recommendation [55.74527632797241]
量子パラメトリック回路は、量子回路のサイズを減らす代替として構築される。
与えられた問題の最適回路を決定することは 未解決の問題です
本研究では,分類問題に対する量子回路レコメンデーションアーキテクチャを,データベースの複雑性尺度を用いて提案する。
論文 参考訳(メタデータ) (2025-02-21T01:17:24Z) - Q-gen: A Parameterized Quantum Circuit Generator [0.6062751776009752]
本稿では、15個の現実的量子アルゴリズムを取り入れた高レベルパラメータ化量子回路生成器Q-genを紹介する。
Q-genは、古典的なコンピュータサイエンスの背景を持つユーザが量子コンピューティングの世界に飛び込むための入り口として機能するオープンソースプロジェクトである。
論文 参考訳(メタデータ) (2024-07-26T12:22:40Z) - Analysis of arbitrary superconducting quantum circuits accompanied by a
Python package: SQcircuit [0.0]
超伝導量子回路は、フォールトトレラント量子コンピュータを実現するための有望なハードウェアプラットフォームである。
超伝導量子回路の量子化ハミルトニアンを物理記述から構築する枠組みを開発する。
我々は,オープンソースのPythonパッケージであるSQcircuitで記述した手法を実装した。
論文 参考訳(メタデータ) (2022-06-16T17:24:51Z) - DisCoPy for the quantum computer scientist [0.0]
DisCoPyは文字列ダイアグラムと関手を使って計算するためのオープンソースのツールボックスである。
特に、ダイアグラムのデータ構造は、古典的なシミュレーションと最適化のための関手を用いて、様々な種類の量子プロセスを符号化することができる。
これには、ZX計算とその多くの変種、量子機械学習で使用されるパラメータ化回路、線形光量子コンピューティングも含まれる。
論文 参考訳(メタデータ) (2022-05-10T22:13:11Z) - TensorLy-Quantum: Quantum Machine Learning with Tensor Methods [67.29221827422164]
PyTorch APIを採用した量子回路シミュレーションのためのPythonライブラリを作成します。
Ly-Quantumは、単一のGPU上で数百のキュービット、複数のGPU上で数千のキュービットにスケールすることができる。
論文 参考訳(メタデータ) (2021-12-19T19:26:17Z) - QuantumCircuitOpt: An Open-source Framework for Provably Optimal Quantum
Circuit Design [0.0]
我々は,任意のユニタリゲートをハードウェアネイティブゲート列に分解する数学的最適化とアルゴリズムを実装した,新しいオープンソースフレームワークQuantumCircuitOptを提案する。
QCOptは、最大4キュービットの回路上で必要ゲート数を最大57%削減し、コモディティコンピューティングハードウェア上では数分未満で実行可能であることを示す。
また、IBMやRigetti、Googleなど、さまざまなハードウェアプラットフォームに基づいて、QCOptパッケージをさまざまな組み込みネイティブゲートセットに適合させる方法も示しています。
論文 参考訳(メタデータ) (2021-11-23T06:45:40Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
特定の演算を行うユニタリ行列が与えられた場合、等価な量子回路を得るのは非自明な作業である。
量子ウォーカーのコイン、トフォリゲート、フレドキンゲートの3つの問題が研究されている。
提案したアルゴリズムは量子回路の分解に効率的であることが証明され、汎用的なアプローチとして、利用可能な計算力によってのみ制限される。
論文 参考訳(メタデータ) (2021-06-06T13:15:25Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。