Blockchain Meets Adaptive Honeypots: A Trust-Aware Approach to Next-Gen IoT Security
- URL: http://arxiv.org/abs/2504.16226v1
- Date: Tue, 22 Apr 2025 19:36:19 GMT
- Title: Blockchain Meets Adaptive Honeypots: A Trust-Aware Approach to Next-Gen IoT Security
- Authors: Yazan Otoum, Arghavan Asad, Amiya Nayak,
- Abstract summary: Edge computing-based Next-Generation Wireless Networks (NGWN)-IoT offer enhanced bandwidth capacity for large-scale service provisioning.<n>Existing intrusion detection and prevention methods provide limited security as adversaries continually adapt their attack strategies.<n>We propose a dynamic attack detection and prevention approach to address this challenge.
- Score: 6.649910168731417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge computing-based Next-Generation Wireless Networks (NGWN)-IoT offer enhanced bandwidth capacity for large-scale service provisioning but remain vulnerable to evolving cyber threats. Existing intrusion detection and prevention methods provide limited security as adversaries continually adapt their attack strategies. We propose a dynamic attack detection and prevention approach to address this challenge. First, blockchain-based authentication uses the Deoxys Authentication Algorithm (DAA) to verify IoT device legitimacy before data transmission. Next, a bi-stage intrusion detection system is introduced: the first stage uses signature-based detection via an Improved Random Forest (IRF) algorithm. In contrast, the second stage applies feature-based anomaly detection using a Diffusion Convolution Recurrent Neural Network (DCRNN). To ensure Quality of Service (QoS) and maintain Service Level Agreements (SLA), trust-aware service migration is performed using Heap-Based Optimization (HBO). Additionally, on-demand virtual High-Interaction honeypots deceive attackers and extract attack patterns, which are securely stored using the Bimodal Lattice Signature Scheme (BLISS) to enhance signature-based Intrusion Detection Systems (IDS). The proposed framework is implemented in the NS3 simulation environment and evaluated against existing methods across multiple performance metrics, including accuracy, attack detection rate, false negative rate, precision, recall, ROC curve, memory usage, CPU usage, and execution time. Experimental results demonstrate that the framework significantly outperforms existing approaches, reinforcing the security of NGWN-enabled IoT ecosystems
Related papers
- Intrusion Detection in IoT Networks Using Hyperdimensional Computing: A Case Study on the NSL-KDD Dataset [0.2399911126932527]
The rapid expansion of Internet of Things (IoT) networks has introduced new security challenges.<n>In this study, a detection framework based on hyperdimensional computing (HDC) is proposed to identify and classify network intrusions.<n>The proposed approach effectively distinguishes various attack categories such as DoS, probe, R2L, and U2R, while accurately identifying normal traffic patterns.
arXiv Detail & Related papers (2025-03-04T22:33:37Z) - SAFE: Self-Supervised Anomaly Detection Framework for Intrusion Detection [6.587970321208976]
This paper introduces SAFE, a novel framework that transforms network intrusion data into an image-like format.
It is shown that SAFE outperforms the state-of-the-art anomaly detection method, Scale Learning-based Deep Anomaly Detection method (SLAD), by up to 26.2%.
It also surpasses the state-of-the-art SSL-based network intrusion detection approach, Anomal-E, by up to 23.5% in F1-score.
arXiv Detail & Related papers (2025-02-10T23:20:59Z) - Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
We propose a novel Multi-Space Prototypical Learning framework tailored for few-shot attack detection.
By leveraging Polyak-averaged prototype generation, the framework stabilizes the learning process and effectively adapts to rare and zero-day attacks.
Experimental results on benchmark datasets demonstrate that MSPL outperforms traditional approaches in detecting low-profile and novel attack types.
arXiv Detail & Related papers (2024-12-28T00:09:46Z) - LLM-based Continuous Intrusion Detection Framework for Next-Gen Networks [0.7100520098029439]
The framework employs a transformer encoder architecture, which captures hidden patterns in a bidirectional manner to differentiate between malicious and legitimate traffic.
The system incrementally identifies unknown attack types by leveraging a Gaussian Mixture Model (GMM) to cluster features derived from high-dimensional BERT embeddings.
Even after integrating additional unknown attack clusters, the framework continues to perform at a high level, achieving 95.6% in both classification accuracy and recall.
arXiv Detail & Related papers (2024-11-04T18:12:14Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Audio Anti-spoofing Using a Simple Attention Module and Joint
Optimization Based on Additive Angular Margin Loss and Meta-learning [43.519717601587864]
This study introduces a simple attention module to infer 3-dim attention weights for the feature map in a convolutional layer.
We propose a joint optimization approach based on the weighted additive angular margin loss for binary classification.
Our proposed approach delivers a competitive result with a pooled EER of 0.99% and min t-DCF of 0.0289.
arXiv Detail & Related papers (2022-11-17T21:25:29Z) - Robust Attack Detection Approach for IIoT Using Ensemble Classifier [0.0]
The objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network.
The proposed model is tested on standard IoT attack outliers such as WUSTL_IIOT-2018, N_BaIoT, and Bot_IoT.
The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network.
arXiv Detail & Related papers (2021-01-30T07:21:44Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.