論文の概要: General Post-Processing Framework for Fairness Adjustment of Machine Learning Models
- arxiv url: http://arxiv.org/abs/2504.16238v1
- Date: Tue, 22 Apr 2025 20:06:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.912779
- Title: General Post-Processing Framework for Fairness Adjustment of Machine Learning Models
- Title(参考訳): 機械学習モデルの公正調整のための一般的な後処理フレームワーク
- Authors: Léandre Eberhard, Nirek Sharma, Filipp Shelobolin, Aalok Ganesh Shanbhag,
- Abstract要約: 本稿では,多様な機械学習タスクに適用可能な公平度調整のための新しいフレームワークを提案する。
モデルトレーニングプロセスから公平性調整を分離することにより、我々のフレームワークは平均的なモデル性能を保ちます。
提案手法の有効性をAdversarial Debiasingと比較し,本フレームワークが実世界のデータセットに対して同等の公平さ/精度のトレードオフを実現することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning increasingly influences critical domains such as credit underwriting, public policy, and talent acquisition, ensuring compliance with fairness constraints is both a legal and ethical imperative. This paper introduces a novel framework for fairness adjustments that applies to diverse machine learning tasks, including regression and classification, and accommodates a wide range of fairness metrics. Unlike traditional approaches categorized as pre-processing, in-processing, or post-processing, our method adapts in-processing techniques for use as a post-processing step. By decoupling fairness adjustments from the model training process, our framework preserves model performance on average while enabling greater flexibility in model development. Key advantages include eliminating the need for custom loss functions, enabling fairness tuning using different datasets, accommodating proprietary models as black-box systems, and providing interpretable insights into the fairness adjustments. We demonstrate the effectiveness of this approach by comparing it to Adversarial Debiasing, showing that our framework achieves a comparable fairness/accuracy tradeoff on real-world datasets.
- Abstract(参考訳): 機械学習が信用引受、公共政策、人材獲得といった重要な領域に影響を及ぼすにつれて、公正性制約の遵守を保証することは法的および倫理的規範である。
本稿では、回帰や分類を含む多様な機械学習タスクに適用可能な、フェアネス調整のための新しいフレームワークを紹介し、幅広いフェアネス指標に適合する。
従来の処理前処理,内処理,後処理のアプローチとは異なり,本手法は処理後ステップとして使用する内部処理技術に適応する。
モデルトレーニングプロセスから公平性調整を分離することにより、フレームワークはモデル開発の柔軟性を高めつつ、平均的なモデル性能を保ちます。
主な利点は、カスタム損失関数の必要性の排除、異なるデータセットを使用したフェアネスチューニングの実現、ブラックボックスシステムとしてのプロプライエタリなモデルの調整、フェアネス調整に関する解釈可能な洞察の提供である。
提案手法の有効性をAdversarial Debiasingと比較し,本フレームワークが実世界のデータセットに対して同等の公平さ/精度のトレードオフを実現することを示す。
関連論文リスト
- From Efficiency to Equity: Measuring Fairness in Preference Learning [3.2132738637761027]
不平等とロウルシアン正義の経済理論に触発された嗜好学習モデルの公平性を評価する。
Gini Coefficient, Atkinson Index, Kuznets Ratio を用いて,これらのモデルの公平性を定量化するための指標を提案する。
論文 参考訳(メタデータ) (2024-10-24T15:25:56Z) - Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality [1.5498930424110338]
本研究では,モデル不確実性を利用した機械学習におけるバイアス軽減手法を提案する。
提案手法では,モンテカルロ・ドロップアウト(MC)と組み合わせたマルチタスク学習(MTL)フレームワークを用いて,保護ラベルに関連する予測の不確実性を評価・緩和する。
論文 参考訳(メタデータ) (2024-04-12T04:17:50Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
本稿では,学習からランクへの学習ループに,効率よく解ける公正ランキングモデルを組み込む方法について述べる。
特に,本論文は,OWA目標の制約された最適化を通じてバックプロパゲーションを行う方法を示す最初のものである。
論文 参考訳(メタデータ) (2024-02-07T20:53:53Z) - Integrating Fairness and Model Pruning Through Bi-level Optimization [16.213634992886384]
フェアネス基準に準拠したスパースモデルを開発することを含む、フェアモデルプルーニングという新しい概念を導入する。
特に,プルーニングマスクと重み更新処理を公平性制約で協調的に最適化する枠組みを提案する。
このフレームワークは、統一されたプロセスにおける公正性を確保しながら、パフォーマンスを維持するモデルを圧縮するように設計されている。
論文 参考訳(メタデータ) (2023-12-15T20:08:53Z) - FRAPPE: A Group Fairness Framework for Post-Processing Everything [48.57876348370417]
本稿では,任意の正規化インプロセッシング手法をポストプロセッシング手法に変換するフレームワークを提案する。
理論的および実験を通して、我々のフレームワークは、内部処理で達成された優れた公正なエラートレードオフを保っていることを示す。
論文 参考訳(メタデータ) (2023-12-05T09:09:21Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Improving Fair Training under Correlation Shifts [33.385118640843416]
特にラベルとセンシティブなグループ間のバイアスが変化すると、トレーニングされたモデルの公平性に直接影響し、悪化する可能性がある。
既存のプロセス内フェアアルゴリズムは、精度とグループフェアネスに根本的な限界があることを解析的に示す。
相関シフトを減らすために入力データをサンプリングする新しい前処理ステップを提案する。
論文 参考訳(メタデータ) (2023-02-05T07:23:35Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - fairlib: A Unified Framework for Assessing and Improving Classification
Fairness [66.27822109651757]
Fairlibは、分類の公平さを評価し改善するためのオープンソースのフレームワークである。
我々は、前処理、訓練時間、後処理を含む14のデバイアス化手法を実装した。
組み込まれたメトリクスは、最も一般的に使用されるフェアネス基準をカバーし、フェアネス評価のためにさらに一般化およびカスタマイズすることができる。
論文 参考訳(メタデータ) (2022-05-04T03:50:23Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Group-Aware Threshold Adaptation for Fair Classification [9.496524884855557]
複数のフェアネス制約を克服する新しいポストプロセッシング手法を提案する。
理論的には,同条件下での既存手法よりも近似最適に近い上界を許容する。
実験の結果,本手法は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-08T04:36:37Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。