論文の概要: On the Consistency of GNN Explanations for Malware Detection
- arxiv url: http://arxiv.org/abs/2504.16316v1
- Date: Tue, 22 Apr 2025 23:25:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.959808
- Title: On the Consistency of GNN Explanations for Malware Detection
- Title(参考訳): マルウェア検出のためのGNN説明の整合性について
- Authors: Hossein Shokouhinejad, Griffin Higgins, Roozbeh Razavi-Far, Hesamodin Mohammadian, Ali A. Ghorbani,
- Abstract要約: 制御フローグラフ(CFG)は、プログラムの実行を分析し、マルウェアの振る舞いを特徴づけるのに重要である。
本研究では、CFGを動的に構築し、ハイブリッドアプローチを用いてノード特徴を埋め込む新しいフレームワークを提案する。
その後、GNNベースの分類器が構築され、結果のグラフ表現から悪意のある振る舞いを検出する。
- 参考スコア(独自算出の注目度): 2.464148828287322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.
- Abstract(参考訳): 制御フローグラフ(CFG)は、プログラムの実行を分析し、マルウェアの振る舞いを特徴づけるのに重要である。
グラフニューラルネットワーク(GNN)の普及に伴い、CFGベースの表現はマルウェア検出に非常に効果的であることが証明されている。
本研究では,ルールベースエンコーディングとオートエンコーダベースの埋め込みを組み合わせたハイブリッドアプローチを用いて,CFGを動的に構築し,ノード特徴を埋め込む新しいフレームワークを提案する。
その後、GNNベースの分類器が構築され、結果のグラフ表現から悪意のある振る舞いを検出する。
モデル解釈性を改善するために,GNNExplainer,PGExplainer,CaptumExplainerといった最先端の説明可能性技術を適用し,後者は3つの帰属的手法である統合グラディエント,ガイドバックプロパゲーション,サリエンシを利用する。
さらに,トップパフォーマンス説明器の出力を統合して説明品質を向上させる,RandFusionと呼ばれる新しいアグリゲーション手法を導入する。
また,構造コヒーレンス向上のためのGreedy Edge-wise Composition (GEC) 法を含む,2つの部分グラフ抽出手法による説明の評価を行った。
精度, 忠実度, 整合性の測定値を用いた総合的な評価は, マルウェアサンプルの正確な同定と, 信頼性と解釈可能な説明を生成する上で, 提案手法の有効性を示すものである。
関連論文リスト
- Dual Explanations via Subgraph Matching for Malware Detection [2.6436521007616114]
解釈可能なマルウェア検出は、有害な振る舞いを理解し、自動セキュリティシステムへの信頼を構築するために不可欠である。
グラフニューラルネットワーク(GNN)の従来の説明可能なメソッドは、しばしばグラフ内の重要な領域をハイライトするが、既知の良性や悪意のある行動パターンと関連付けることができない。
本稿では,GNNに基づくマルウェア検出決定を解釈する,新しい2つのプロトタイプ駆動型説明可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-29T16:20:28Z) - Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning [0.0]
グラフ表現学習は、ノード分類やリンク予測といったタスクの基盤として登場した。
現在の自己教師付き学習(SSL)手法は、計算の非効率性、対照的な目的への依存、表現の崩壊といった課題に直面している。
本稿では,意味情報と構造情報を保存しながら,対照的な目的と負のサンプリングを排除したグラフSSLのための新しい結合埋め込み予測フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-02T07:42:45Z) - Explainable Malware Detection through Integrated Graph Reduction and Learning Techniques [2.464148828287322]
制御フローグラフと関数コールグラフは、プログラム実行の詳細な理解を提供する上で重要なものとなっている。
これらのグラフベースの表現は、グラフニューラルネットワーク(GNN)と組み合わせることで、高性能なマルウェア検出器の開発において有望であることが示されている。
本稿では,グラフサイズを削減し,GNN出力の解釈可能性を高めるために最先端のGNNExplainerを適用し,これらの問題に対処する。
論文 参考訳(メタデータ) (2024-12-04T18:59:45Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
本稿では,補助的説明の集約によるノード分類タスクの説明品質の向上手法を提案する。
SEENを適用するにはグラフを変更する必要はなく、さまざまな説明可能性のテクニックで使用することができる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上した。
論文 参考訳(メタデータ) (2021-06-16T03:04:46Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
そこで我々は,アモータイズされたコミュニティ検出のためのシンプルなフレームワークを提案する。
我々はGNNの表現力と最近のアモータイズクラスタリングの手法を組み合わせる。
我々は、合成および実データセットに関するフレームワークから、いくつかのモデルを評価する。
論文 参考訳(メタデータ) (2020-10-29T16:18:48Z) - ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine (system
description) [0.4893345190925177]
本稿では,飽和式自動定理証明器の勾配押し上げと神経誘導の実装について述べる。
勾配ブースティング法では、論理式のアリティに基づく符号化を考慮し、手動で抽象的な特徴を生成できる。
ニューラルネットワークでは,シンボルに依存しないグラフニューラルネットワーク(GNN)と,その用語や節の埋め込みを用いる。
論文 参考訳(メタデータ) (2020-02-13T09:44:38Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。