On the Consistency of GNN Explanations for Malware Detection
- URL: http://arxiv.org/abs/2504.16316v1
- Date: Tue, 22 Apr 2025 23:25:12 GMT
- Title: On the Consistency of GNN Explanations for Malware Detection
- Authors: Hossein Shokouhinejad, Griffin Higgins, Roozbeh Razavi-Far, Hesamodin Mohammadian, Ali A. Ghorbani,
- Abstract summary: Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior.<n>This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach.<n>A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations.
- Score: 2.464148828287322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Control Flow Graphs (CFGs) are critical for analyzing program execution and characterizing malware behavior. With the growing adoption of Graph Neural Networks (GNNs), CFG-based representations have proven highly effective for malware detection. This study proposes a novel framework that dynamically constructs CFGs and embeds node features using a hybrid approach combining rule-based encoding and autoencoder-based embedding. A GNN-based classifier is then constructed to detect malicious behavior from the resulting graph representations. To improve model interpretability, we apply state-of-the-art explainability techniques, including GNNExplainer, PGExplainer, and CaptumExplainer, the latter is utilized three attribution methods: Integrated Gradients, Guided Backpropagation, and Saliency. In addition, we introduce a novel aggregation method, called RankFusion, that integrates the outputs of the top-performing explainers to enhance the explanation quality. We also evaluate explanations using two subgraph extraction strategies, including the proposed Greedy Edge-wise Composition (GEC) method for improved structural coherence. A comprehensive evaluation using accuracy, fidelity, and consistency metrics demonstrates the effectiveness of the proposed framework in terms of accurate identification of malware samples and generating reliable and interpretable explanations.
Related papers
- Dual Explanations via Subgraph Matching for Malware Detection [2.6436521007616114]
Interpretable malware detection is crucial for understanding harmful behaviors and building trust in automated security systems.
Traditional explainable methods for Graph Neural Networks (GNNs) often highlight important regions within a graph but fail to associate them with known benign or malicious behavioral patterns.
We introduce a novel dual prototype-driven explainable framework that interprets GNN-based malware detection decisions.
arXiv Detail & Related papers (2025-04-29T16:20:28Z) - Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning [0.0]
Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction.<n>Current self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse.<n>We propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information.
arXiv Detail & Related papers (2025-02-02T07:42:45Z) - Explainable Malware Detection through Integrated Graph Reduction and Learning Techniques [2.464148828287322]
Control Flow Graphs and Function Call Graphs have become pivotal in providing a detailed understanding of program execution.<n>These graph-based representations, when combined with Graph Neural Networks (GNN), have shown promise in developing high-performance malware detectors.<n>This paper addresses these issues by developing several graph reduction techniques to reduce graph size and applying the state-of-the-art GNNExplainer to enhance the interpretability of GNN outputs.
arXiv Detail & Related papers (2024-12-04T18:59:45Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
arXiv Detail & Related papers (2021-06-16T03:04:46Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Amortized Probabilistic Detection of Communities in Graphs [39.56798207634738]
We propose a simple framework for amortized community detection.
We combine the expressive power of GNNs with recent methods for amortized clustering.
We evaluate several models from our framework on synthetic and real datasets.
arXiv Detail & Related papers (2020-10-29T16:18:48Z) - ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine (system
description) [0.4893345190925177]
We describe an implementation of gradient boosting and neural guidance of saturation-style automated theorem provers.
For the gradient-boosting guidance, we manually create abstracted features by considering arity-based encodings of formulas.
For the neural guidance, we use symbol-independent graph neural networks (GNNs) and their embedding of the terms and clauses.
arXiv Detail & Related papers (2020-02-13T09:44:38Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.