Dynamic Time-aware Continual User Representation Learning
- URL: http://arxiv.org/abs/2504.16501v1
- Date: Wed, 23 Apr 2025 08:23:59 GMT
- Title: Dynamic Time-aware Continual User Representation Learning
- Authors: Seungyoon Choi, Sein Kim, Hongseok Kang, Wonjoong Kim, Chanyoung Park,
- Abstract summary: We introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated.<n>We propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO.
- Score: 16.676154241985255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional user modeling (UM) approaches have primarily focused on designing models for a single specific task, but they face limitations in generalization and adaptability across various tasks. Recognizing these challenges, recent studies have shifted towards continual learning (CL)-based universal user representation learning aiming to develop a single model capable of handling multiple tasks. Despite advancements, existing methods are in fact evaluated under an unrealistic scenario that does not consider the passage of time as tasks progress, which overlooks newly emerged items that may change the item distribution of previous tasks. In this paper, we introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated, which takes into account the passage of time as tasks progress. Then, we propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO, designed to alleviate catastrophic forgetting despite continuous shifts in item distribution, while also allowing the knowledge acquired from previous tasks to adapt to the current shifted item distribution. Through our extensive experiments, we demonstrate the superiority of DITTO over state-of-the-art methods under a practical evaluation scenario. Our source code is available at https://github.com/seungyoon-Choi/DITTO_official.
Related papers
- PCL: Prompt-based Continual Learning for User Modeling in Recommender Systems [14.865675196583334]
We propose a Prompt-based Continual Learning framework for user modeling, which utilizes position-wise prompts as external memory for each task.<n>We conduct extensive experiments on real-world datasets to demonstrate PCL's effectiveness.
arXiv Detail & Related papers (2025-02-26T23:47:33Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.<n>To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.<n>We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Task Relation-aware Continual User Representation Learning [26.514449669395297]
Previous efforts in user modeling mainly focus on learning a task-specific user representation that is designed for a single task.
Recent studies introduce the concept of universal user representation, which is a more generalized representation of a user relevant to a variety of tasks.
Despite their effectiveness, existing approaches for learning universal user representations are impractical in real-world applications.
We propose a novel continual user representation learning method, called TERACON, whose learning capability is not limited as the number of learned tasks increases.
arXiv Detail & Related papers (2023-06-01T08:10:03Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
The study of multi-task learning has drawn great attention from the community.
Despite the remarkable progress, the challenge of optimally learning different tasks simultaneously remains to be explored.
Previous works attempt to modify the gradients from different tasks. Yet these methods give a subjective assumption of the relationship between tasks, and the modified gradient may be less accurate.
In this paper, we introduce Task Allocation(STA), a mechanism that addresses this issue by a task allocation approach, in which each sample is randomly allocated a subset of tasks.
For further progress, we propose Interleaved Task Allocation(ISTA) to iteratively allocate all
arXiv Detail & Related papers (2022-03-06T11:57:18Z) - Hierarchical Few-Shot Imitation with Skill Transition Models [66.81252581083199]
Few-shot Imitation with Skill Transition Models (FIST) is an algorithm that extracts skills from offline data and utilizes them to generalize to unseen tasks.
We show that FIST is capable of generalizing to new tasks and substantially outperforms prior baselines in navigation experiments.
arXiv Detail & Related papers (2021-07-19T15:56:01Z) - Learning Invariant Representation for Continual Learning [5.979373021392084]
A key challenge in Continual learning is catastrophically forgetting previously learned tasks when the agent faces a new one.
We propose a new pseudo-rehearsal-based method, named learning Invariant Representation for Continual Learning (IRCL)
Disentangling the shared invariant representation helps to learn continually a sequence of tasks, while being more robust to forgetting and having better knowledge transfer.
arXiv Detail & Related papers (2021-01-15T15:12:51Z) - Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of
Gaussian Processes [25.513074215377696]
This paper proposes a continual online model-based reinforcement learning approach.
It does not require pre-training to solve task-agnostic problems with unknown task boundaries.
In experiments, our approach outperforms alternative methods in non-stationary tasks.
arXiv Detail & Related papers (2020-06-19T23:52:45Z) - A Neural Dirichlet Process Mixture Model for Task-Free Continual
Learning [48.87397222244402]
We propose an expansion-based approach for task-free continual learning.
Our model successfully performs task-free continual learning for both discriminative and generative tasks.
arXiv Detail & Related papers (2020-01-03T02:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.