PCL: Prompt-based Continual Learning for User Modeling in Recommender Systems
- URL: http://arxiv.org/abs/2502.19628v1
- Date: Wed, 26 Feb 2025 23:47:33 GMT
- Title: PCL: Prompt-based Continual Learning for User Modeling in Recommender Systems
- Authors: Mingdai Yang, Fan Yang, Yanhui Guo, Shaoyuan Xu, Tianchen Zhou, Yetian Chen, Simone Shao, Jia Liu, Yan Gao,
- Abstract summary: We propose a Prompt-based Continual Learning framework for user modeling, which utilizes position-wise prompts as external memory for each task.<n>We conduct extensive experiments on real-world datasets to demonstrate PCL's effectiveness.
- Score: 14.865675196583334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: User modeling in large e-commerce platforms aims to optimize user experiences by incorporating various customer activities. Traditional models targeting a single task often focus on specific business metrics, neglecting the comprehensive user behavior, and thus limiting their effectiveness. To develop more generalized user representations, some existing work adopts Multi-task Learning (MTL)approaches. But they all face the challenges of optimization imbalance and inefficiency in adapting to new tasks. Continual Learning (CL), which allows models to learn new tasks incrementally and independently, has emerged as a solution to MTL's limitations. However, CL faces the challenge of catastrophic forgetting, where previously learned knowledge is lost when the model is learning the new task. Inspired by the success of prompt tuning in Pretrained Language Models (PLMs), we propose PCL, a Prompt-based Continual Learning framework for user modeling, which utilizes position-wise prompts as external memory for each task, preserving knowledge and mitigating catastrophic forgetting. Additionally, we design contextual prompts to capture and leverage inter-task relationships during prompt tuning. We conduct extensive experiments on real-world datasets to demonstrate PCL's effectiveness.
Related papers
- Dynamic Time-aware Continual User Representation Learning [16.676154241985255]
We introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated.
We propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO.
arXiv Detail & Related papers (2025-04-23T08:23:59Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
We investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples.
We show that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts.
Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve.
arXiv Detail & Related papers (2025-01-15T10:57:55Z) - Modality-Inconsistent Continual Learning of Multimodal Large Language Models [37.15220266767881]
We introduce Modality-Inconsistent Continual Learning (MICL), a new continual learning scenario for Multimodal Large Language Models (MLLMs)<n>Unlike existing vision-only or modality-incremental settings, MICL combines modality and task type shifts, both of which drive catastrophic forgetting.<n>We propose MoInCL, which employs a Pseudo Targets Generation Module to mitigate forgetting caused by task type shifts in previously seen modalities.
arXiv Detail & Related papers (2024-12-17T16:13:56Z) - Unified Parameter-Efficient Unlearning for LLMs [25.195126838721492]
Large Language Models (LLMs) have revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks.<n>This raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information.<n>We introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise adjustments using influence functions.
arXiv Detail & Related papers (2024-11-30T07:21:02Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtend is an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models.
MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models.
arXiv Detail & Related papers (2024-08-07T02:28:37Z) - Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
We explore capturing the task-specific information via meticulous refinement of entire Vision-Language Models (VLMs)
To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task.
arXiv Detail & Related papers (2024-07-04T15:22:54Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - CoIN: A Benchmark of Continual Instruction tuNing for Multimodel Large Language Model [121.23360004498893]
We present a benchmark, namely Continual Instruction tuNing (CoIN), to assess existing MLLMs in the sequential instruction tuning paradigm.
Experiments on CoIN demonstrate that current powerful MLLMs still suffer catastrophic forgetting.
We introduce MoELoRA to MLLMs which is effective to retain the previous instruction alignment.
arXiv Detail & Related papers (2024-03-13T08:54:31Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - Task Relation-aware Continual User Representation Learning [26.514449669395297]
Previous efforts in user modeling mainly focus on learning a task-specific user representation that is designed for a single task.
Recent studies introduce the concept of universal user representation, which is a more generalized representation of a user relevant to a variety of tasks.
Despite their effectiveness, existing approaches for learning universal user representations are impractical in real-world applications.
We propose a novel continual user representation learning method, called TERACON, whose learning capability is not limited as the number of learned tasks increases.
arXiv Detail & Related papers (2023-06-01T08:10:03Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.