論文の概要: Streetscape Analysis with Generative AI (SAGAI): Vision-Language Assessment and Mapping of Urban Scenes
- arxiv url: http://arxiv.org/abs/2504.16538v1
- Date: Wed, 23 Apr 2025 09:08:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.061686
- Title: Streetscape Analysis with Generative AI (SAGAI): Vision-Language Assessment and Mapping of Urban Scenes
- Title(参考訳): ジェネレーティブAI(SAGAI)を用いた街路景観分析 : 都市景観の視覚・言語評価とマッピング
- Authors: Joan Perez, Giovanni Fusco,
- Abstract要約: 本稿では,SAGAI:Streetscape Analysis with Generative Artificial Intelligenceを紹介する。
これは、オープンアクセスデータと視覚言語モデルを使用して、街路レベルの都市シーンを評価するためのモジュラーワークフローである。
タスク固有のトレーニングやプロプライエタリなソフトウェア依存関係なしで動作します。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Streetscapes are an essential component of urban space. Their assessment is presently either limited to morphometric properties of their mass skeleton or requires labor-intensive qualitative evaluations of visually perceived qualities. This paper introduces SAGAI: Streetscape Analysis with Generative Artificial Intelligence, a modular workflow for scoring street-level urban scenes using open-access data and vision-language models. SAGAI integrates OpenStreetMap geometries, Google Street View imagery, and a lightweight version of the LLaVA model to generate structured spatial indicators from images via customizable natural language prompts. The pipeline includes an automated mapping module that aggregates visual scores at both the point and street levels, enabling direct cartographic interpretation. It operates without task-specific training or proprietary software dependencies, supporting scalable and interpretable analysis of urban environments. Two exploratory case studies in Nice and Vienna illustrate SAGAI's capacity to produce geospatial outputs from vision-language inference. The initial results show strong performance for binary urban-rural scene classification, moderate precision in commercial feature detection, and lower estimates, but still informative, of sidewalk width. Fully deployable by any user, SAGAI can be easily adapted to a wide range of urban research themes, such as walkability, safety, or urban design, through prompt modification alone.
- Abstract(参考訳): 街並みは都市空間の重要な要素である。
彼らの評価は、現在、マススケルトンの形態的特性に限られているか、あるいは視覚的に知覚される品質の労働集約的な質的評価が必要である。
本稿ではSAGAI: Streetscape Analysis with Generative Artificial Intelligenceを紹介する。これは、オープンアクセスデータと視覚言語モデルを用いて、街路レベルの都市シーンを評価するためのモジュラーワークフローである。
SAGAIはOpenStreetMapのジオメトリ、Googleストリートビューの画像、LLaVAモデルの軽量バージョンを統合し、カスタマイズ可能な自然言語プロンプトを通じて画像から構造化された空間指標を生成する。
パイプラインには、ポイントレベルとストリートレベルの両方で視覚的なスコアを集約する自動マッピングモジュールが含まれており、直接的な地図解釈を可能にしている。
タスク固有のトレーニングやプロプライエタリなソフトウェア依存関係なしで動作し、都市環境のスケーラブルで解釈可能な分析をサポートする。
ニースとウィーンの2つの探索的ケーススタディは、視覚言語推論から地理空間出力を生成するSAGAIの能力を示している。
最初の結果は,二元的都市・農村の景観分類,商業的特徴検出の適度な精度,そして歩道幅の低い推定値に対して高い性能を示した。
SAGAIは、どのユーザでも完全なデプロイが可能で、歩行性、安全性、都市デザインなどの幅広い都市研究テーマに、迅速な修正だけで容易に適応できる。
関連論文リスト
- AerialGo: Walking-through City View Generation from Aerial Perspectives [48.53976414257845]
AerialGoは、空中画像からリアルな街並みを生成するフレームワークである。
AerialGoは、アクセス可能な航空データに地上視合成を条件付けすることで、地上レベルの画像に固有のプライバシーリスクを回避できる。
実験により、AerialGoは地上レベルのリアリズムと構造的コヒーレンスを著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-11-29T08:14:07Z) - StreetviewLLM: Extracting Geographic Information Using a Chain-of-Thought Multimodal Large Language Model [12.789465279993864]
地理空間予測は災害管理、都市計画、公衆衛生など様々な分野において重要である。
提案するStreetViewLLMは,大規模言語モデルと連鎖推論とマルチモーダルデータソースを統合した新しいフレームワークである。
このモデルは、香港、東京、シンガポール、ロサンゼルス、ニューヨーク、ロンドン、パリを含む7つの世界都市に適用されている。
論文 参考訳(メタデータ) (2024-11-19T05:15:19Z) - Multimodal Contrastive Learning of Urban Space Representations from POI Data [2.695321027513952]
CaLLiPer (Contrastive Language-Location Pre-training) は連続的な都市空間をベクトル表現に埋め込む表現学習モデルである。
ロンドンにおける都市空間表現の学習に適用し,CaLLiPerの有効性を検証する。
論文 参考訳(メタデータ) (2024-11-09T16:24:07Z) - BuildingView: Constructing Urban Building Exteriors Databases with Street View Imagery and Multimodal Large Language Mode [1.0937094979510213]
ストリートビュー・イメージリーの進歩と、都市研究との統合によって、都市分析において、外部建設はますます重要になっている。
我々は,Googleストリートビューの高解像度視覚データをOpenStreetMapの空間情報とOverpass APIを介して統合する新しいアプローチであるBuildingViewを提案する。
本研究は,都市の建築外装データの精度を向上し,キーサステナビリティと設計指標を特定し,その抽出と分類のための枠組みを開発する。
論文 参考訳(メタデータ) (2024-09-29T03:00:16Z) - 3D Question Answering for City Scene Understanding [12.433903847890322]
3Dマルチモーダル質問応答(MQA)は,知的エージェントが周囲を3D環境下で理解できるようにすることによって,シーン理解において重要な役割を担っている。
都市レベルのシーン理解のための3D MQAデータセットCity-3DQAを提案する。
新しいベンチマークを報告し,提案したSg-CityUはCity-3DQAの異なる設定で63.94 %と63.76 %の精度を達成する。
論文 参考訳(メタデータ) (2024-07-24T16:22:27Z) - Urban Scene Diffusion through Semantic Occupancy Map [49.20779809250597]
UrbanDiffusionは、Bird's-Eye View (BEV)マップに条件付き3次元拡散モデルである。
我々のモデルは,潜在空間内のシーンレベルの構造の分布を学習する。
実世界の運転データセットをトレーニングした後、我々のモデルは多様な都市シーンを生成することができる。
論文 参考訳(メタデータ) (2024-03-18T11:54:35Z) - MatrixCity: A Large-scale City Dataset for City-scale Neural Rendering
and Beyond [69.37319723095746]
都市規模のニューラルレンダリング研究のための大規模で包括的で高品質な合成データセットを構築します。
本研究では,地上カメラのポーズと追加データモダリティを伴って,航空・街路ビューを容易に収集するパイプラインを構築した。
その結果得られたパイロットデータセットMatrixCityには、合計28km2$の2つの都市地図から、67kの空中画像と452kのストリート画像が含まれている。
論文 参考訳(メタデータ) (2023-09-28T16:06:02Z) - VELMA: Verbalization Embodiment of LLM Agents for Vision and Language
Navigation in Street View [81.58612867186633]
視覚と言語ナビゲーション(VLN)は、視覚的および自然言語の理解と空間的および時間的推論能力を必要とする。
VELMAは,2つのコンテキスト内例のみを用いて,ストリートビューでのナビゲーション指示に従うことができることを示す。
数千の例でLLMエージェントをさらに微調整し、従来の2つのデータセットのタスク完了に対する25%-30%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2023-07-12T11:08:24Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
本稿では,Mapillary SVIとOpenStreetMapのデータから建物の高さを自動的に推定する半教師付き学習(SSL)手法を提案する。
提案手法は, 平均絶対誤差(MAE)が約2.1mである建物の高さを推定する上で, 明らかな性能向上につながる。
予備結果は,低コストなVGIデータに基づく提案手法のスケールアップに向けた今後の取り組みを期待し,動機づけるものである。
論文 参考訳(メタデータ) (2023-07-05T18:16:30Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - Urban2Vec: Incorporating Street View Imagery and POIs for Multi-Modal
Urban Neighborhood Embedding [8.396746290518102]
Urban2Vecは、ストリートビューイメージと関心のポイントデータの両方を組み込んだ、教師なしマルチモーダルフレームワークである。
我々は,Urban2Vecがベースラインモデルよりも優れた性能を実現し,下流予測タスクにおける完全教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2020-01-29T21:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。