QAOA-PCA: Enhancing Efficiency in the Quantum Approximate Optimization Algorithm via Principal Component Analysis
- URL: http://arxiv.org/abs/2504.16755v1
- Date: Wed, 23 Apr 2025 14:27:31 GMT
- Title: QAOA-PCA: Enhancing Efficiency in the Quantum Approximate Optimization Algorithm via Principal Component Analysis
- Authors: Owain Parry, Phil McMinn,
- Abstract summary: We introduce QAOA-PCA to reduce the dimensionality of the QAOA parameter space.<n>We show that QAOA-PCA consistently requires fewer iterations than standard QAOA.<n> QAOA-PCA almost always outperforms standard QAOA when matched by parameter count.
- Score: 4.511923587827302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is a promising variational algorithm for solving combinatorial optimization problems on near-term devices. However, as the number of layers in a QAOA circuit increases, which is correlated with the quality of the solution, the number of parameters to optimize grows linearly. This results in more iterations required by the classical optimizer, which results in an increasing computational burden as more circuit executions are needed. To mitigate this issue, we introduce QAOA-PCA, a novel reparameterization technique that employs Principal Component Analysis (PCA) to reduce the dimensionality of the QAOA parameter space. By extracting principal components from optimized parameters of smaller problem instances, QAOA-PCA facilitates efficient optimization with fewer parameters on larger instances. Our empirical evaluation on the prominent MaxCut problem demonstrates that QAOA-PCA consistently requires fewer iterations than standard QAOA, achieving substantial efficiency gains. While this comes at the cost of a slight reduction in approximation ratio compared to QAOA with the same number of layers, QAOA-PCA almost always outperforms standard QAOA when matched by parameter count. QAOA-PCA strikes a favorable balance between efficiency and performance, reducing optimization overhead without significantly compromising solution quality.
Related papers
- Investigating layer-selective transfer learning of QAOA parameters for Max-Cut problem [1.515687944002438]
We numerically explore the role of individual QAOA layers in improving the approximate solution of the Max-Cut problem after parameter transfer.<n>These studies show that optimizing a subset of layers can be more effective at a lower time-cost compared to optimizing all layers.
arXiv Detail & Related papers (2024-12-30T16:41:16Z) - Parameter Setting Heuristics Make the Quantum Approximate Optimization Algorithm Suitable for the Early Fault-Tolerant Era [3.734751161717204]
Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising quantum optimizations.
Recent advances in parameter setting in QAOA make EFTQC experiments with QAOA practically viable.
arXiv Detail & Related papers (2024-08-18T16:48:14Z) - Adiabatic-Passage-Based Parameter Setting for Quantum Approximate
Optimization Algorithm [0.7252027234425334]
We propose a novel adiabatic-passage-based parameter setting method.
This method remarkably reduces the optimization cost, specifically when applied to the 3-SAT problem, to a sublinear level.
arXiv Detail & Related papers (2023-11-30T01:06:41Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Iterative Layerwise Training for Quantum Approximate Optimization
Algorithm [0.39945675027960637]
The capability of the quantum approximate optimization algorithm (QAOA) in solving the optimization problems has been intensively studied in recent years.
We propose the iterative layerwise optimization strategy and explore the possibility for the reduction of optimization cost in solving problems with QAOA.
arXiv Detail & Related papers (2023-09-24T05:12:48Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
We simulate the performance of QAOA applied to the Max-Cut problem and compare it with some of the best classical alternatives.
Because of the evolving QAOA computational complexity-theoretic guidance, we utilize a framework for the search for quantum advantage.
arXiv Detail & Related papers (2020-06-08T18:00:18Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.