Approximating Optimal Labelings for Temporal Connectivity
- URL: http://arxiv.org/abs/2504.16837v1
- Date: Wed, 23 Apr 2025 16:00:33 GMT
- Title: Approximating Optimal Labelings for Temporal Connectivity
- Authors: Daniele Carnevale, Gianlorenzo D'Angelo, Martin Olsen,
- Abstract summary: We study the problem of scheduling the availability time of the edges of a temporal graph in such a way that all pairs of vertices are connected within a given maximum allowed time $a$.<n>The problem, known as emphMinimum Aged Labeling (MAL), has several applications in logistics, distribution scheduling, and information spreading in social networks.
- Score: 7.394099294390271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a temporal graph the edge set dynamically changes over time according to a set of time-labels associated with each edge that indicates at which time-steps the edge is available. Two vertices are connected if there is a path connecting them in which the edges are traversed in increasing order of their labels. We study the problem of scheduling the availability time of the edges of a temporal graph in such a way that all pairs of vertices are connected within a given maximum allowed time $a$ and the overall number of labels is minimized. The problem, known as \emph{Minimum Aged Labeling} (MAL), has several applications in logistics, distribution scheduling, and information spreading in social networks, where carefully choosing the time-labels can significantly reduce infrastructure costs, fuel consumption, or greenhouse gases. The problem MAL has previously been proved to be NP-complete on undirected graphs and \APX-hard on directed graphs. In this paper, we extend our knowledge on the complexity and approximability of MAL in several directions. We first show that the problem cannot be approximated within a factor better than $O(\log n)$ when $a\geq 2$, unless $\text{P} = \text{NP}$, and a factor better than $2^{\log ^{1-\epsilon} n}$ when $a\geq 3$, unless $\text{NP}\subseteq \text{DTIME}(2^{\text{polylog}(n)})$, where $n$ is the number of vertices in the graph. Then we give a set of approximation algorithms that, under some conditions, almost match these lower bounds. In particular, we show that the approximation depends on a relation between $a$ and the diameter of the input graph. We further establish a connection with a foundational optimization problem on static graphs called \emph{Diameter Constrained Spanning Subgraph} (DCSS) and show that our hardness results also apply to DCSS.
Related papers
- Linear Causal Bandits: Unknown Graph and Soft Interventions [18.412177974475526]
designing causal bandit algorithms depends on two central categories of assumptions.
The problem in its general form, i.e., unknown graph and unknown intervention models, remains open.
This paper addresses this problem and establishes that in a graph with $N$ nodes, maximum in-degree $d$ and maximum causal path length $L$, after $T$ interaction rounds the regret upper bound scales.
arXiv Detail & Related papers (2024-11-04T18:50:39Z) - Graph Unfolding and Sampling for Transitory Video Summarization via Gershgorin Disc Alignment [48.137527345353625]
User-generated videos (UGVs) uploaded from mobile phones to social media sites like YouTube and TikTok are short and non-repetitive.
We summarize a transitory UGV into several discs in linear time via fast graph sampling based on Gershgorin disc alignment (GDA)
We show that our algorithm achieves comparable or better video summarization performance compared to state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2024-08-03T20:08:02Z) - Exact Algorithms and Lowerbounds for Multiagent Pathfinding: Power of
Treelike Topology [0.0]
We focus on efficiently finding paths for a set of $k agents on a given graph $G, where each agent seeks a path from its source to a target.
An important measure of the quality of the solution is the length of the proposed schedule $ell$, that is, the length of a longest path.
We show that MAPF is W[1]-hard for cliquewidth of $G$ plus $ell$ while it is FPT for treewidth of $G$ plus $ell$.
arXiv Detail & Related papers (2023-12-15T09:42:46Z) - Dynamic algorithms for k-center on graphs [3.568439282784197]
We give the first efficient algorithms for the $k$-center problem on dynamic graphs undergoing edge updates.
We show a reduction that leads to a fully dynamic $(2+epsilon)$-approximation algorithm for the $k$-center problem.
arXiv Detail & Related papers (2023-07-28T13:50:57Z) - Near-Optimal Regret Bounds for Multi-batch Reinforcement Learning [54.806166861456035]
We study the episodic reinforcement learning (RL) problem modeled by finite-horizon Markov Decision Processes (MDPs) with constraint on the number of batches.
We design a computational efficient algorithm to achieve near-optimal regret of $tildeO(sqrtSAH3Kln (1/delta))$tildeO(cdot) hides logarithmic terms of $(S,A,H,K)$ in $K$ episodes.
Our technical contribution are two-fold: 1) a near-optimal design scheme to explore
arXiv Detail & Related papers (2022-10-15T09:22:22Z) - Horizon-Free Reinforcement Learning in Polynomial Time: the Power of
Stationary Policies [88.75843804630772]
We design an algorithm that achieves an $Oleft(mathrmpoly(S,A,log K)sqrtKright)$ regret in contrast to existing bounds.
Our result relies on a sequence of new structural lemmas establishing the approximation power, stability, and concentration property of stationary policies.
arXiv Detail & Related papers (2022-03-24T08:14:12Z) - A sublinear query quantum algorithm for s-t minimum cut on dense simple
graphs [1.0435741631709405]
An $soperatorname-t$ minimum cut in a graph corresponds to a minimum weight subset of edges whose removal disconnects $s$ and $t$.
In this work we describe a quantum algorithm for the minimum $soperatorname-t$ cut problem on undirected graphs.
arXiv Detail & Related papers (2021-10-29T07:35:46Z) - Random Subgraph Detection Using Queries [29.192695995340653]
The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense.
In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries.
For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph.
arXiv Detail & Related papers (2021-10-02T07:41:17Z) - Projection-free Graph-based Classifier Learning using Gershgorin Disc
Perfect Alignment [59.87663954467815]
In graph-based binary learning, a subset of known labels $hatx_i$ are used to infer unknown labels.
When restricting labels $x_i$ to binary values, the problem is NP-hard.
We propose a fast projection-free method by solving a sequence of linear programs (LP) instead.
arXiv Detail & Related papers (2021-06-03T07:22:48Z) - Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization [59.65871549878937]
We prove that the practical single loop accelerated gradient tracking needs $O(fracgamma1-sigma_gamma)2sqrtfracLepsilon)$.<n>Our convergence rates improve significantly over the ones of $O(frac1epsilon5/7)$ and $O(fracLmu)5/7frac1 (1-sigma)1.5logfrac1epsilon)$.
arXiv Detail & Related papers (2021-04-06T15:34:14Z) - Random Graph Matching with Improved Noise Robustness [2.294014185517203]
We propose a new algorithm for graph matching under probabilistic models.
Our algorithm recovers the underlying matching with high probability when $alpha le 1 / (log log n)C$.
This improves the condition $alpha le 1 / (log n)C$ achieved in previous work.
arXiv Detail & Related papers (2021-01-28T02:39:27Z) - Learning Bayesian Networks Under Sparsity Constraints: A Parameterized
Complexity Analysis [7.99536002595393]
We study the problem of learning the structure of an optimal Bayesian network when additional constraints are posed on the network or on its moralized graph.
We show that learning an optimal network with at most $k$ edges in the moralized graph presumably has no $f(k)cdot |I|O(1)$-time algorithm.
arXiv Detail & Related papers (2020-04-30T12:31:13Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
We study the problem of agnostic $Q$-learning with function approximation in deterministic systems.
We show that if $delta = Oleft(rho/sqrtdim_Eright)$, then one can find the optimal policy using $Oleft(dim_Eright)$.
arXiv Detail & Related papers (2020-02-17T18:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.