DeepEmotex: Classifying Emotion in Text Messages using Deep Transfer
Learning
- URL: http://arxiv.org/abs/2206.06775v1
- Date: Sun, 12 Jun 2022 03:23:40 GMT
- Title: DeepEmotex: Classifying Emotion in Text Messages using Deep Transfer
Learning
- Authors: Maryam Hasan, Elke Rundensteiner, Emmanuel Agu
- Abstract summary: We propose DeepEmotex an effective sequential transfer learning method to detect emotion in text.
We conduct an experimental study using both curated Twitter data sets and benchmark data sets.
DeepEmotex models achieve over 91% accuracy for multi-class emotion classification on test dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning has been widely used in natural language processing through
deep pretrained language models, such as Bidirectional Encoder Representations
from Transformers and Universal Sentence Encoder. Despite the great success,
language models get overfitted when applied to small datasets and are prone to
forgetting when fine-tuned with a classifier. To remedy this problem of
forgetting in transferring deep pretrained language models from one domain to
another domain, existing efforts explore fine-tuning methods to forget less. We
propose DeepEmotex an effective sequential transfer learning method to detect
emotion in text. To avoid forgetting problem, the fine-tuning step is
instrumented by a large amount of emotion-labeled data collected from Twitter.
We conduct an experimental study using both curated Twitter data sets and
benchmark data sets. DeepEmotex models achieve over 91% accuracy for
multi-class emotion classification on test dataset. We evaluate the performance
of the fine-tuned DeepEmotex models in classifying emotion in EmoInt and
Stimulus benchmark datasets. The models correctly classify emotion in 73% of
the instances in the benchmark datasets. The proposed DeepEmotex-BERT model
outperforms Bi-LSTM result on the benchmark datasets by 23%. We also study the
effect of the size of the fine-tuning dataset on the accuracy of our models.
Our evaluation results show that fine-tuning with a large set of
emotion-labeled data improves both the robustness and effectiveness of the
resulting target task model.
Related papers
- Emotion Detection in Reddit: Comparative Study of Machine Learning and Deep Learning Techniques [0.0]
This study concentrates on text-based emotion detection by leveraging the GoEmotions dataset.
We employed a range of models for this task, including six machine learning models, three ensemble models, and a Long Short-Term Memory (LSTM) model.
Results indicate that the Stacking classifier outperforms other models in accuracy and performance.
arXiv Detail & Related papers (2024-11-15T16:28:25Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams [49.3179290313959]
This study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models.
We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions.
Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification.
arXiv Detail & Related papers (2024-03-18T23:41:52Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Enhancing Sentiment Analysis Results through Outlier Detection
Optimization [0.5439020425819]
This study investigates the potential of identifying and addressing outliers in text data with subjective labels.
We utilize the Deep SVDD algorithm, a one-class classification method, to detect outliers in nine text-based emotion and sentiment analysis datasets.
arXiv Detail & Related papers (2023-11-25T18:20:43Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
We propose Adapted Multimodal BERT, a BERT-based architecture for multimodal tasks.
adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations.
In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise.
arXiv Detail & Related papers (2022-12-01T17:31:42Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Fortunately, Discourse Markers Can Enhance Language Models for Sentiment
Analysis [13.149482582098429]
We propose to leverage sentiment-carrying discourse markers to generate large-scale weakly-labeled data.
We show the value of our approach on various benchmark datasets, including the finance domain.
arXiv Detail & Related papers (2022-01-06T12:33:47Z) - Offensive Language and Hate Speech Detection with Deep Learning and
Transfer Learning [1.77356577919977]
We propose an approach to automatically classify tweets into three classes: Hate, offensive and Neither.
We create a class module which contains main functionality including text classification, sentiment checking and text data augmentation.
arXiv Detail & Related papers (2021-08-06T20:59:47Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.