論文の概要: Planning with Diffusion Models for Target-Oriented Dialogue Systems
- arxiv url: http://arxiv.org/abs/2504.16858v1
- Date: Wed, 23 Apr 2025 16:27:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 15:16:07.290407
- Title: Planning with Diffusion Models for Target-Oriented Dialogue Systems
- Title(参考訳): ターゲット指向対話システムのための拡散モデルによる計画
- Authors: Hanwen Du, Bo Peng, Xia Ning,
- Abstract要約: 非逐次対話計画のための対話計画フレームワークであるDiffTODを紹介する。
DiffTODは、条件付き誘導を用いた軌道生成問題として対話計画を定式化する。
我々は,DiffTODが筋視的でない視線探索を効果的に行え,長い地平線上での行動戦略を最適化できることを示す。
- 参考スコア(独自算出の注目度): 5.079888940901933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Target-Oriented Dialogue (TOD) remains a significant challenge in the LLM era, where strategic dialogue planning is crucial for directing conversations toward specific targets. However, existing dialogue planning methods generate dialogue plans in a step-by-step sequential manner, and may suffer from compounding errors and myopic actions. To address these limitations, we introduce a novel dialogue planning framework, DiffTOD, which leverages diffusion models to enable non-sequential dialogue planning. DiffTOD formulates dialogue planning as a trajectory generation problem with conditional guidance, and leverages a diffusion language model to estimate the likelihood of the dialogue trajectory. To optimize the dialogue action strategies, DiffTOD introduces three tailored guidance mechanisms for different target types, offering flexible guidance towards diverse TOD targets at test time. Extensive experiments across three diverse TOD settings show that DiffTOD can effectively perform non-myopic lookahead exploration and optimize action strategies over a long horizon through non-sequential dialogue planning, and demonstrates strong flexibility across complex and diverse dialogue scenarios. Our code and data are accessible through https://anonymous.4open.science/r/DiffTOD.
- Abstract(参考訳): 目標指向対話(TOD)は、特定の目標に向けて対話を指示するために戦略的対話計画が不可欠であるLLM時代において、依然として重要な課題である。
しかし,既存の対話計画手法では段階的に対話計画が生成され,誤りや筋活動の複雑化に悩まされる可能性がある。
これらの制約に対処するために,拡散モデルを利用して非逐次対話計画を可能にする新しい対話計画フレームワークDiffTODを導入する。
DiffTODは、条件付き誘導による軌道生成問題として対話計画を定式化し、拡散言語モデルを用いて対話軌道の確率を推定する。
対話アクション戦略を最適化するために、DiffTODは異なるターゲットタイプに対して3つの調整されたガイダンスメカニズムを導入し、テスト時に様々なTODターゲットに対して柔軟なガイダンスを提供する。
3つの多様なTOD設定にわたる広範囲な実験により、DiffTODは非明視的ルックアヘッド探索を効果的に行え、非逐次対話計画を通じて長い地平線上でのアクション戦略を最適化し、複雑で多様な対話シナリオにまたがる強力な柔軟性を示す。
私たちのコードとデータはhttps://anonymous.4open.science/r/DiffTODを通じてアクセスできます。
関連論文リスト
- DFlow: Diverse Dialogue Flow Simulation with Large Language Models [16.209331014315463]
本稿では,合成対話の多様性を高めるための新しいデータシミュレーション手法を提案する。
我々は、15の異なる領域に3,886の対話フローからなるタスク指向対話データセットを生成する。
論文 参考訳(メタデータ) (2024-10-18T20:35:28Z) - Dialogue Action Tokens: Steering Language Models in Goal-Directed Dialogue with a Multi-Turn Planner [51.77263363285369]
本稿では,対話行動トークンと呼ばれる言語モデルエージェントを用いて,目標指向の対話を計画する手法を提案する。
中心となる考え方は、各発話をアクションとして扱うことで、強化学習のような既存のアプローチを適用することができるゲームに対話を変換することである。
論文 参考訳(メタデータ) (2024-06-17T18:01:32Z) - Target-constrained Bidirectional Planning for Generation of
Target-oriented Proactive Dialogue [11.338393954848632]
ターゲット指向対話生成のための効果的な対話計画に着目する。
認知科学における意思決定理論に着想を得て,新たな目標制約型双方向計画手法を提案する。
我々のアルゴリズムは、様々なベースラインモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-10T02:14:24Z) - TOD-Flow: Modeling the Structure of Task-Oriented Dialogues [77.15457469745364]
ダイアログを付加した対話データからTOD-Flowグラフを推定する手法を提案する。
推定されたTOD-Flowグラフは、任意の対話モデルと容易に統合することができ、予測性能、透明性、制御性を改善することができる。
論文 参考訳(メタデータ) (2023-12-07T20:06:23Z) - Plug-and-Play Policy Planner for Large Language Model Powered Dialogue
Agents [121.46051697742608]
そこで本稿では,PDPPという言語モデルプラグインを用いて対話問題を整理するための新たな対話ポリシー計画パラダイムを提案する。
具体的には、利用可能な人間の注釈付きデータに対する教師付き微調整を容易にするための新しいトレーニングフレームワークを開発する。
PPDPPは3つの異なるプロアクティブな対話アプリケーションにおいて、既存のアプローチを一貫して、実質的に上回っている。
論文 参考訳(メタデータ) (2023-11-01T03:20:16Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Dialogue Planning via Brownian Bridge Stochastic Process for
Goal-directed Proactive Dialogue [9.99763097964222]
ゴール指向対話システムは,マルチターン会話を通じて事前決定された目標に積極的に到達することを目的としている。
このタスクを達成するための鍵は、ターゲットに向かってスムーズかつ一貫性のある会話を誘導する対話パスを計画することにある。
本稿では,対話経路の時間的ダイナミクスをモデル化するプロセスを用いた対話計画手法を提案する。
論文 参考訳(メタデータ) (2023-05-09T09:28:23Z) - Enhancing Task Bot Engagement with Synthesized Open-Domain Dialog [89.35658776144638]
TODとODDの両方を扱えるシステムを構築し、異なる知識ソースにアクセスすることが不可欠である。
本稿では,知識基盤のODDとTODを組み合わせた対話を自動的に生成するフレームワークを提案する。
本研究では,TODモードとODDモードを適切に適用し,異なる知識ソースにアクセス可能な統合モデルPivotBotを提案する。
論文 参考訳(メタデータ) (2022-12-20T05:51:47Z) - Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking [5.816391291790977]
対話状態追跡(DST)は、人間と機械の相互作用を追跡し、対話を管理するための状態表現を生成することを目的としている。
機械読解の最近の進歩は、対話状態追跡のための分類型と非分類型のスロットの両方を予測する。
我々は対話行為を定式化し、機械読解の最近の進歩を活用し、対話状態追跡のためのカテゴリー型と非カテゴリ型の両方のスロットを予測する。
論文 参考訳(メタデータ) (2022-08-04T05:18:30Z) - Variational Hierarchical Dialog Autoencoder for Dialog State Tracking
Data Augmentation [59.174903564894954]
本研究では,この手法を,ゴール指向対話のための対話状態追跡タスクに拡張する。
目的指向ダイアログの完全な側面をモデル化するための変分階層型ダイアログオートエンコーダ(VHDA)を提案する。
各種ダイアログデータセットを用いた実験により、生成データ拡張による下流ダイアログトラッカーのロバスト性の向上が示された。
論文 参考訳(メタデータ) (2020-01-23T15:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。