An Adaptive ML Framework for Power Converter Monitoring via Federated Transfer Learning
- URL: http://arxiv.org/abs/2504.16866v1
- Date: Wed, 23 Apr 2025 16:39:54 GMT
- Title: An Adaptive ML Framework for Power Converter Monitoring via Federated Transfer Learning
- Authors: Panagiotis Kakosimos, Alireza Nemat Saberi, Luca Peretti,
- Abstract summary: This study explores alternative framework configurations for adapting thermal machine learning (ML) models for power converters.<n>The framework starts with a base model that is incrementally adapted by multiple clients via adapting three state-of-the-art domain adaptation techniques.<n> Validation with field data demonstrates that fine-tuning offers a straightforward TL approach with high accuracy, making it suitable for practical applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study explores alternative framework configurations for adapting thermal machine learning (ML) models for power converters by combining transfer learning (TL) and federated learning (FL) in a piecewise manner. This approach inherently addresses challenges such as varying operating conditions, data sharing limitations, and security implications. The framework starts with a base model that is incrementally adapted by multiple clients via adapting three state-of-the-art domain adaptation techniques: Fine-tuning, Transfer Component Analysis (TCA), and Deep Domain Adaptation (DDA). The Flower framework is employed for FL, using Federated Averaging for aggregation. Validation with field data demonstrates that fine-tuning offers a straightforward TL approach with high accuracy, making it suitable for practical applications. Benchmarking results reveal a comprehensive comparison of these methods, showcasing their respective strengths and weaknesses when applied in different scenarios. Locally hosted FL enhances performance when data aggregation is not feasible, while cloud-based FL becomes more practical with a significant increase in the number of clients, addressing scalability and connectivity challenges.
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.<n>Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - Lightweight Industrial Cohorted Federated Learning for Heterogeneous Assets [0.0]
Federated Learning (FL) is the most widely adopted collaborative learning approach for training decentralized Machine Learning (ML) models.
However, since great data similarity or homogeneity is taken for granted in all FL tasks, FL is still not specifically designed for the industrial setting.
We propose a Lightweight Industrial Cohorted FL (LICFL) algorithm that uses model parameters for cohorting without any additional on-edge (clientlevel) computations and communications.
arXiv Detail & Related papers (2024-07-25T12:48:56Z) - Federated Transfer Learning with Task Personalization for Condition Monitoring in Ultrasonic Metal Welding [3.079885946230076]
This paper presents a Transfer Learning with.
Federated Task Task architecture (FTLTP) that provides data capabilities in distributed distributed learning framework.
The FTL-TP framework is readily to various other manufacturing applications.
arXiv Detail & Related papers (2024-04-20T05:31:59Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformers (ViT) and Visual Prompt Tuning (VPT) achieve state-of-the-art performance with improved efficiency in various computer vision tasks.
We present a novel algorithm, SGPT, that integrates Generalized FL (GFL) and Personalized FL (PFL) approaches by employing a unique combination of both shared and group-specific prompts.
arXiv Detail & Related papers (2023-10-27T17:22:09Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.