High-Quality Cloud-Free Optical Image Synthesis Using Multi-Temporal SAR and Contaminated Optical Data
- URL: http://arxiv.org/abs/2504.16870v1
- Date: Wed, 23 Apr 2025 16:44:53 GMT
- Title: High-Quality Cloud-Free Optical Image Synthesis Using Multi-Temporal SAR and Contaminated Optical Data
- Authors: Chenxi Duan,
- Abstract summary: This paper tackles the challenges of missing optical data synthesis, particularly in complex scenarios with cloud cover.<n>We propose CR SynthNet, a novel image synthesis network that incorporates innovative designed modules such as the DownUp Block and Fusion Attention to enhance accuracy.<n> Experimental results validate the effectiveness of CR SynthNet, demonstrating substantial improvements in restoring structural details, preserving spectral consist, and achieving superior visual effects that far exceed those produced by comparison methods.
- Score: 1.5410557873153836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing gaps caused by cloud cover and the long revisit cycle of satellites is vital for providing essential data to support remote sensing applications. This paper tackles the challenges of missing optical data synthesis, particularly in complex scenarios with cloud cover. We propose CRSynthNet, a novel image synthesis network that incorporates innovative designed modules such as the DownUp Block and Fusion Attention to enhance accuracy. Experimental results validate the effectiveness of CRSynthNet, demonstrating substantial improvements in restoring structural details, preserving spectral consist, and achieving superior visual effects that far exceed those produced by comparison methods. It achieves quantitative improvements across multiple metrics: a peak signal-to-noise ratio (PSNR) of 26.978, a structural similarity index measure (SSIM) of 0.648, and a root mean square error (RMSE) of 0.050. Furthermore, this study creates the TCSEN12 dataset, a valuable resource specifically designed to address cloud cover challenges in missing optical data synthesis study. The dataset uniquely includes cloud-covered images and leverages earlier image to predict later image, offering a realistic representation of real-world scenarios. This study offer practical method and valuable resources for optical satellite image synthesis task.
Related papers
- Cloud Removal With PolSAR-Optical Data Fusion Using A Two-Flow Residual Network [9.529237717137121]
Reconstructing cloud-free optical images has become a major task in recent years.<n>This paper presents a two-flow Polarimetric Synthetic Aperture Radar (PolSAR)-Optical data fusion cloud removal algorithm.
arXiv Detail & Related papers (2025-01-14T07:35:14Z) - SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection [3.9061053498250753]
We present SynDroneVision, a synthetic dataset specifically designed for RGB-based drone detection in surveillance applications.
Our findings demonstrate that SynDroneVision is a valuable resource for real-world data enrichment, achieving notable enhancements in model performance and robustness, while significantly reducing the time and costs of real-world data acquisition.
arXiv Detail & Related papers (2024-11-08T15:22:49Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Learning from Synthetic Data for Visual Grounding [55.21937116752679]
We show that SynGround can improve the localization capabilities of off-the-shelf vision-and-language models.<n>Data generated with SynGround improves the pointing game accuracy of a pretrained ALBEF and BLIP models by 4.81% and 17.11% absolute percentage points, respectively.
arXiv Detail & Related papers (2024-03-20T17:59:43Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
We leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image rendering.
We demonstrate a considerable performance boost when a state-of-the-art detection model is optimized primarily on hybrid sets of real and synthetic data.
arXiv Detail & Related papers (2023-10-25T00:20:37Z) - SyntheWorld: A Large-Scale Synthetic Dataset for Land Cover Mapping and
Building Change Detection [20.985372561774415]
We present SyntheWorld, a synthetic dataset unparalleled in quality, diversity, and scale.
It includes 40,000 images with submeter-level pixels and fine-grained land cover annotations of eight categories.
We will release SyntheWorld to facilitate remote sensing image processing research.
arXiv Detail & Related papers (2023-09-05T02:42:41Z) - DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal from
Optical Satellite Images [27.02507384522271]
This paper presents a novel framework called DiffCR, which leverages conditional guided diffusion with deep convolutional networks for high-performance cloud removal for optical satellite imagery.
We introduce a decoupled encoder for conditional image feature extraction, providing a robust color representation to ensure the close similarity of appearance information between the conditional input and the synthesized output.
arXiv Detail & Related papers (2023-08-08T17:34:28Z) - RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis [104.53930611219654]
We present a large-scale synthetic dataset for novel view synthesis consisting of 300k images rendered from nearly 2000 complex scenes.
The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis.
Using 4 distinct sources of high-quality 3D meshes, the scenes of our dataset exhibit challenging variations in camera views, lighting, shape, materials, and textures.
arXiv Detail & Related papers (2022-05-14T13:15:32Z) - Comparison of convolutional neural networks for cloudy optical images
reconstruction from single or multitemporal joint SAR and optical images [0.21079694661943604]
We focus on the evaluation of convolutional neural networks that use jointly SAR and optical images to retrieve the missing contents in one single polluted optical image.
We propose a simple framework that eases the creation of datasets for the training of deep nets targeting optical image reconstruction.
We show how space partitioning data structures help to query samples in terms of cloud coverage, relative acquisition date, pixel validity and relative proximity between SAR and optical images.
arXiv Detail & Related papers (2022-04-01T13:31:23Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z) - Attention Based Real Image Restoration [48.933507352496726]
Deep convolutional neural networks perform better on images containing synthetic degradations.
This paper proposes a novel single-stage blind real image restoration network (R$2$Net)
arXiv Detail & Related papers (2020-04-26T04:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.