Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
- URL: http://arxiv.org/abs/2504.16923v1
- Date: Wed, 23 Apr 2025 17:51:36 GMT
- Title: Meta-Learning Online Dynamics Model Adaptation in Off-Road Autonomous Driving
- Authors: Jacob Levy, Jason Gibson, Bogdan Vlahov, Erica Tevere, Evangelos Theodorou, David Fridovich-Keil, Patrick Spieler,
- Abstract summary: High-speed off-road autonomous driving presents unique challenges due to complex, evolving terrain characteristics.<n>We propose a novel framework that combines a Kalman filter-based online adaptation scheme with meta-learned parameters to address these challenges.<n>Our results underscore the effectiveness of meta-learned dynamics model adaptation, advancing the development of reliable autonomous systems.
- Score: 9.515695438588855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-speed off-road autonomous driving presents unique challenges due to complex, evolving terrain characteristics and the difficulty of accurately modeling terrain-vehicle interactions. While dynamics models used in model-based control can be learned from real-world data, they often struggle to generalize to unseen terrain, making real-time adaptation essential. We propose a novel framework that combines a Kalman filter-based online adaptation scheme with meta-learned parameters to address these challenges. Offline meta-learning optimizes the basis functions along which adaptation occurs, as well as the adaptation parameters, while online adaptation dynamically adjusts the onboard dynamics model in real time for model-based control. We validate our approach through extensive experiments, including real-world testing on a full-scale autonomous off-road vehicle, demonstrating that our method outperforms baseline approaches in prediction accuracy, performance, and safety metrics, particularly in safety-critical scenarios. Our results underscore the effectiveness of meta-learned dynamics model adaptation, advancing the development of reliable autonomous systems capable of navigating diverse and unseen environments. Video is available at: https://youtu.be/cCKHHrDRQEA
Related papers
- Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Online Calibration of a Single-Track Ground Vehicle Dynamics Model by Tight Fusion with Visual-Inertial Odometry [8.165828311550152]
We present ST-VIO, a novel approach which tightly fuses a single-track dynamics model for wheeled ground vehicles with visual inertial odometry (VIO)
Our method calibrates and adapts the dynamics model online to improve the accuracy of forward prediction conditioned on future control inputs.
arXiv Detail & Related papers (2023-09-20T08:50:30Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
We propose a method for learning terrain-aware kinodynamic model conditioned on both proprioceptive and exteroceptive information.
The proposed model generates reliable predictions of 6-degree-of-freedom motion and can even estimate contact interactions.
We demonstrate the effectiveness of our approach through experiments on a simulated off-road track, showing that our proposed model-controller pair outperforms the baseline.
arXiv Detail & Related papers (2023-05-01T06:09:49Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - PointFix: Learning to Fix Domain Bias for Robust Online Stereo
Adaptation [67.41325356479229]
We propose to incorporate an auxiliary point-selective network into a meta-learning framework, called PointFix.
In a nutshell, our auxiliary network learns to fix local variants intensively by effectively back-propagating local information through the meta-gradient.
This network is model-agnostic, so can be used in any kind of architectures in a plug-and-play manner.
arXiv Detail & Related papers (2022-07-27T07:48:29Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
We develop and apply an iterative learning semi-parametric model, with a neural network, to the task of autonomous racing.
We show that our model can learn more accurately than a purely parametric model and generalize better than a purely non-parametric model.
arXiv Detail & Related papers (2020-11-17T16:24:10Z) - Model-Based Meta-Reinforcement Learning for Flight with Suspended
Payloads [69.21503033239985]
Transporting suspended payloads is challenging for autonomous aerial vehicles.
We propose a meta-learning approach that "learns how to learn" models of altered dynamics within seconds of post-connection flight data.
arXiv Detail & Related papers (2020-04-23T17:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.