Bosonic vs. Fermionic Matter in Quantum Simulations of $2+1$D Gauge Theories
- URL: http://arxiv.org/abs/2504.17000v1
- Date: Wed, 23 Apr 2025 18:00:04 GMT
- Title: Bosonic vs. Fermionic Matter in Quantum Simulations of $2+1$D Gauge Theories
- Authors: N. S. Srivatsa, Jesse J. Osborne, Debasish Banerjee, Jad C. Halimeh,
- Abstract summary: We study the model coupled to hardcore bosons and identify a similar phase structure, though with a more intricate mixture of phases around the transition.<n>Our findings suggest that bosons can effectively replace fermions in lattice gauge theory simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum link models extend lattice gauge theories beyond the traditional Wilson formulation and present promising candidates for both digital and analog quantum simulations. Fermionic matter coupled to $U(1)$ quantum link gauge fields has been extensively studied, revealing a phase diagram that includes transitions from the columnar phase in the quantum dimer model to the resonating valence bond phase in the quantum link model, potentially passing through a disordered liquid-like phase. In this study, we investigate the model coupled to hardcore bosons and identify a similar phase structure, though with a more intricate mixture of phases around the transition. Our analysis reveals that near the transition region, a narrow and distinct ordered phase emerges, characterized by gauge fields forming plaquette configurations with alternating orientations, which is then followed by a thinner, liquid-like regime. This complexity primarily stems from the differences in particle statistics, which manifest prominently when the matter degrees of freedom become dynamic. Notably, our findings suggest that bosons can effectively replace fermions in lattice gauge theory simulations, offering solutions to the challenges posed by fermions in both digital and analog quantum simulations.
Related papers
- Phase transitions and remnants of fractionalization at finite temperature in the triangular lattice quantum loop model [0.3495246564946556]
We study the finite-temperature phase diagram of the quantum loop model on the triangular lattice.<n>We discuss the relevance of our results for current experiments on quantum simulation platforms.
arXiv Detail & Related papers (2024-12-02T13:55:29Z) - Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Dynamics Reflects Quantum Phase Transition of Rabi Model [0.0]
A breakdown in the rotating wave approximation of the Rabi model leads to phase transition versus coupling strength.
We show that the dynamics of physical quantities can reflect such a phase transition for this model.
This work offers an idea to explore phase transitions by non-equilibrium process for open quantum systems.
arXiv Detail & Related papers (2023-09-13T14:45:07Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Ground-state phase diagram of quantum link electrodynamics in $(2+1)$-d [0.0]
We study a lattice gauge theory where the gauge fields, represented by spin-$frac12$ operators are coupled to a single flavor of staggered fermions.
Using matrix product states on infinite cylinders with increasing diameter, we conjecture its phase diagram in $(2+1)$-d.
Our study reveals a rich phase diagram with exotic phases and interesting phase transitions to a potential liquid-like phase.
arXiv Detail & Related papers (2021-12-01T19:00:03Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Entanglement and classical correlations at the doping-driven Mott
transition in the two-dimensional Hubbard model [0.0]
We study the doped Hubbard model in two dimensions from the perspective of quantum information theory.
We find that upon varying doping these two entanglement-related properties detect the Mott insulating phase, the strongly correlated pseudogap phase, and the metallic phase.
arXiv Detail & Related papers (2020-07-01T15:48:48Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.