Dynamics Reflects Quantum Phase Transition of Rabi Model
- URL: http://arxiv.org/abs/2309.06996v2
- Date: Sun, 15 Oct 2023 02:57:48 GMT
- Title: Dynamics Reflects Quantum Phase Transition of Rabi Model
- Authors: M. Li, Y. N. Wang, Z. Y. Song, Y. M. Zhao, X. L. Zhao, H. Y. Ma
- Abstract summary: A breakdown in the rotating wave approximation of the Rabi model leads to phase transition versus coupling strength.
We show that the dynamics of physical quantities can reflect such a phase transition for this model.
This work offers an idea to explore phase transitions by non-equilibrium process for open quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the simplest and most fundamental model describing the interaction between
light and matter, a breakdown in the rotating wave approximation of the Rabi
model leads to phase transition versus coupling strength when the frequency of
the qubit greatly surpasses that of the oscillator. Besides the phase
transition revealed in the ground state, we show that the dynamics of physical
quantities can reflect such a phase transition for this model. In addition to
the excitation of the bosonic field in the ground state, we show that the
witness of inseparability (entanglement), mutual information, quantum Fisher
information, and the variance of cavity quadrature can be employed to detect
the phase transition in quench. We also reveal the negative impact of
temperature on checking the phase transition by quench. This model can be
implemented using trapped ions, superconducting artificial atoms coupled
bosonic modes, and quantum simulations. By reflecting the phase transition in a
fundamental quantum optics model without imposing the thermodynamic limit, this
work offers an idea to explore phase transitions by non-equilibrium process for
open quantum systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dynamical Quantum Phase Transition and Thermal Equilibrium in the Lattice Thirring Model [2.1677452722087884]
We simulate the evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases.
We identify a threshold in the energy density of the initial state, necessary for a dynamical quantum phase transition to be present.
arXiv Detail & Related papers (2024-07-16T00:51:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Sudden change of the photon output field marks phase transitions in the
quantum Rabi model [4.90940514405571]
We describe a method to identify the dynamical critical phenomenon in the quantum Rabi model.
Such a critical phenomenon manifests itself as a sudden change of steady-state output photons.
The sudden change of steady-state output photons is an experimentally accessible measure to probe quantum phase transitions.
arXiv Detail & Related papers (2022-07-25T12:57:08Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Nonequilibrium phase transition in a single-electron micromaser [0.0]
Phase transitions occur in a wide range of physical systems and are characterized by the abrupt change of a physical observable.
Here, we investigate a nonequilibrium phase transition in a single-electron micromaser consisting of a microwave cavity.
We find that the phase transition can be predicted from short-time measurements of the higher-order factorial cumulants.
arXiv Detail & Related papers (2022-01-16T20:12:46Z) - Superradiant Switching, Quantum Hysteresis, and Oscillations in a
Generalized Dicke Model [0.0]
A first-order phase transition to coexisting normal and superradiant phases is observed, corresponding with the emergence of switching dynamics.
We show that this phase coexistence gives rise to a loop also for the quantum mechanical system.
arXiv Detail & Related papers (2020-07-27T02:11:53Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.