Reinforcement learning framework for the mechanical design of microelectronic components under multiphysics constraints
- URL: http://arxiv.org/abs/2504.17142v1
- Date: Wed, 23 Apr 2025 23:20:44 GMT
- Title: Reinforcement learning framework for the mechanical design of microelectronic components under multiphysics constraints
- Authors: Siddharth Nair, Timothy F. Walsh, Greg Pickrell, Fabio Semperlotti,
- Abstract summary: This study focuses on the development of reinforcement learning based techniques for the design of microelectronic components under multiphysics constraints.<n>By taking as prototypical elements an application-specific integrated circuit (ASIC) and a heterogeneously integrated (HI) interposer, we develop and numerically test an optimization framework based on reinforcement learning (RL)<n>More specifically, we consider the optimization of the bonded interconnect geometry for an ASIC chip as well as the placement of components on a HI interposer while satisfying thermoelastic and design constraints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study focuses on the development of reinforcement learning based techniques for the design of microelectronic components under multiphysics constraints. While traditional design approaches based on global optimization approaches are effective when dealing with a small number of design parameters, as the complexity of the solution space and of the constraints increases different techniques are needed. This is an important reason that makes the design and optimization of microelectronic components (characterized by large solution space and multiphysics constraints) very challenging for traditional methods. By taking as prototypical elements an application-specific integrated circuit (ASIC) and a heterogeneously integrated (HI) interposer, we develop and numerically test an optimization framework based on reinforcement learning (RL). More specifically, we consider the optimization of the bonded interconnect geometry for an ASIC chip as well as the placement of components on a HI interposer while satisfying thermoelastic and design constraints. This placement problem is particularly interesting because it features a high-dimensional solution space.
Related papers
- Efficient Design of Compliant Mechanisms Using Multi-Objective Optimization [50.24983453990065]
We address the synthesis of a compliant cross-hinge mechanism capable of large angular strokes.<n>We formulate a multi-objective optimization problem based on kinetostatic performance measures.
arXiv Detail & Related papers (2025-04-23T06:29:10Z) - LLM-USO: Large Language Model-based Universal Sizing Optimizer [4.223946773134886]
We propose a novel method for knowledge representation to encode circuit design knowledge in a structured text format.<n>This representation enables the systematic reuse of optimization insights for circuits with similar sub-structures.<n>This approach serves to: (i) infuse domain-specific knowledge into the BO process and (ii) facilitate knowledge transfer across circuits, mirroring the cognitive strategies of expert designers.
arXiv Detail & Related papers (2025-02-04T23:08:03Z) - Automated and Holistic Co-design of Neural Networks and ASICs for Enabling In-Pixel Intelligence [4.063480188363124]
Extreme edge-AI systems, such as those in readout ASICs for radiation detection, must operate under stringent hardware constraints.
Finding ideal solutions means identifying optimal AI and ASIC design choices from a design space that has explosively expanded.
arXiv Detail & Related papers (2024-07-18T17:58:05Z) - A Survey on Design-space Dimensionality Reduction Methods for Shape Optimization [0.0]
Design-space dimensionality reduction techniques tailored for shape optimization bridging traditional methods and cutting-edge technologies.<n>Studies show how they significantly mitigate the curse of dimensionality, streamline computational processes, and refine the design exploration and optimization of complex functional surfaces.
arXiv Detail & Related papers (2024-05-22T19:19:09Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - AI-Empowered Hybrid MIMO Beamforming [85.48860461696417]
Hybrid multiple-input multiple-output (MIMO) systems implement part of their beamforming in analog and part in digital.
Recent years have witnessed a growing interest in using data-aided artificial intelligence (AI) tools for hybrid beamforming design.
This article reviews candidate strategies to leverage data to improve real-time hybrid beamforming design.
arXiv Detail & Related papers (2023-03-03T06:04:20Z) - Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference [1.1579778934294358]
We introduce a design optimization method based on Generalized Differential Evolution 3 (GDE3) and Gaussian Processes (GPs)
The proposed method is able to perform sizing for complex circuits with a large number of design variables and many conflicting objectives to be optimized.
We evaluate the introduced method on two voltage regulators showing different levels of complexity.
arXiv Detail & Related papers (2022-06-06T06:48:45Z) - Inverse design of photonic devices with strict foundry fabrication
constraints [55.41644538483948]
We introduce a new method for inverse design of nanophotonic devices which guarantees that designs satisfy strict length scale constraints.
We demonstrate the performance and reliability of our method by designing several common integrated photonic components.
arXiv Detail & Related papers (2022-01-31T02:27:25Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.