AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models
- URL: http://arxiv.org/abs/2504.17179v1
- Date: Thu, 24 Apr 2025 01:31:13 GMT
- Title: AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models
- Authors: Mohammad Zarei, Melanie A Jutras, Eliana Evans, Mike Tan, Omid Aaramoon,
- Abstract summary: We present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding rare failure modes.<n>Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing.
- Score: 0.18820558426635298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
Related papers
- Benchmarking Vision Foundation Models for Input Monitoring in Autonomous Driving [7.064497253920508]
Vision Foundation Models (VFMs) as feature extractors and density modeling techniques are proposed.<n>A comparison with state-of-the-art binary OOD classification methods reveals that VFM embeddings with density estimation outperform existing approaches in identifying OOD inputs.<n>Our method detects high-risk inputs likely to cause errors in downstream tasks, thereby improving overall performance.
arXiv Detail & Related papers (2025-01-14T12:51:34Z) - On the Black-box Explainability of Object Detection Models for Safe and Trustworthy Industrial Applications [7.848637922112521]
We focus on model-agnostic explainability methods for object detection models and propose D-P, an extension of the Morphological Fragmental Perturbation Pyramid (P) technique to generate explanations.
We evaluate these methods on real-world industrial and robotic datasets, examining the influence of parameters such as the number of masks, model size, and image resolution on the quality of explanations.
arXiv Detail & Related papers (2024-10-28T13:28:05Z) - XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems [1.3022753212679383]
This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods.
By fusing top features identified by these XAI methods across six diverse AI models, the framework creates a robust and comprehensive set of features critical for detecting anomalies.
Our technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.
arXiv Detail & Related papers (2024-10-20T14:34:48Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving [15.486799633600423]
AutoFed is a framework to fully exploit multimodal sensory data on autonomous vehicles.
We propose a novel model leveraging pseudo-labeling to avoid mistakenly treating unlabeled objects as the background.
We also propose an autoencoder-based data imputation method to fill missing data modality.
arXiv Detail & Related papers (2023-02-17T01:31:53Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Explaining RADAR features for detecting spoofing attacks in Connected
Autonomous Vehicles [2.8153045998456188]
Connected autonomous vehicles (CAVs) are anticipated to have built-in AI systems for defending against cyberattacks.
Machine learning (ML) models form the basis of many such AI systems.
We present a model that explains textitcertainty and textituncertainty in sensor input.
arXiv Detail & Related papers (2022-03-01T00:11:46Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.