論文の概要: A Double-Norm Aggregated Tensor Latent Factorization Model for Temporal-Aware Traffic Speed Imputation
- arxiv url: http://arxiv.org/abs/2504.17196v1
- Date: Thu, 24 Apr 2025 02:00:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.223168
- Title: A Double-Norm Aggregated Tensor Latent Factorization Model for Temporal-Aware Traffic Speed Imputation
- Title(参考訳): 経時的交通速度インプットのための2ノルムアグリゲートテンソル潜在因子化モデル
- Authors: Jiawen Hou, Hao Wu,
- Abstract要約: インテリジェントトランスポートシステム(ITS)では、交通管理部門はリアルタイムの交通データを収集するためにセンサー、カメラ、GPSデバイスに依存している。
現在、テンソル分解に基づく手法は広く利用されており、主に学習目的を構築するために$L$-normに依存している。
本稿では,損失関数に$L$-normとスムーズな$SL$(SL$)-normを組み合わせたTATSI(Temporal-Aware Traffic Speed Imputation)を提案する。
- 参考スコア(独自算出の注目度): 2.2083091880368855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In intelligent transportation systems (ITS), traffic management departments rely on sensors, cameras, and GPS devices to collect real-time traffic data. Traffic speed data is often incomplete due to sensor failures, data transmission delays, or occlusions, resulting in missing speed data in certain road segments. Currently, tensor decomposition based methods are extensively utilized, they mostly rely on the $L_2$-norm to construct their learning objectives, which leads to reduced robustness in the algorithms. To address this, we propose Temporal-Aware Traffic Speed Imputation (TATSI), which combines the $L_2$-norm and smooth $L_1$ (${SL}_1$)-norm in its loss function, thereby achieving both high accuracy and robust performance in imputing missing time-varying traffic speed data. TATSI adopts a single latent factor-dependent, nonnegative, and multiplicative update (SLF-NMU) approach, which serves as an efficient solver for performing nonnegative latent factor analysis (LFA) on a tensor. Empirical studies on three real-world time-varying traffic speed datasets demonstrate that, compared with state-of-the-art traffic speed predictors, TATSI more precisely captures temporal patterns, thereby yielding the most accurate imputations for missing traffic speed data.
- Abstract(参考訳): インテリジェントトランスポートシステム(ITS)では、交通管理部門はリアルタイムの交通データを収集するためにセンサー、カメラ、GPSデバイスに依存している。
交通速度データは、センサーの故障、データ伝送遅延、または閉塞のため不完全であり、特定の道路区間で速度データが欠落する。
現在、テンソル分解に基づく手法は広く利用されており、主に学習目的を構築するために$L_2$-normに頼っているため、アルゴリズムの堅牢性が低下する。
そこで本研究では,損失関数に$L_2$-normと$L_1$$${SL}_1$)-normを併用したTATSI(Temporal-Aware Traffic Speed Imputation)を提案する。
TATSIは、単一の潜伏因子依存、非負、乗算的更新(SLF-NMU)アプローチを採用し、テンソル上で非負の潜伏因子分析(LFA)を実行するための効率的な解法として機能する。
3つの実世界の時間変動交通速度データセットに関する実証研究は、最先端の交通速度予測器と比較して、TATSIが時間的パターンをより正確に捉え、それによって交通速度データの欠落に対して最も正確な計算結果が得られることを示した。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - Efficient and Robust Freeway Traffic Speed Estimation under Oblique Grid using Vehicle Trajectory Data [19.01488741469791]
斜め交通速度を正確に推定するための効率的でロバストな低ランクモデルを提案する。
提案手法は,TSEシナリオにおけるルート平均角誤差(RMSE)を最大12%改善する。
最先端のSOTA(State-of-the-art)メソッドよりも20倍以上高速に動作します。
論文 参考訳(メタデータ) (2024-11-06T15:13:40Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - FastSTI: A Fast Conditional Pseudo Numerical Diffusion Model for Spatio-temporal Traffic Data Imputation [4.932317347331121]
高時間トラフィックデータは、インテリジェントトランスポートシステム(ITS)とそのデータ駆動アプリケーションにとって不可欠である。
拡散確率モデルの最近の研究は、計算における深部生成モデルの優越性を証明している。
2種類の現実世界のトラフィックデータセットを高速に処理することで、高品質なサンプルをわずか6ステップでインプットできることが証明されている。
論文 参考訳(メタデータ) (2024-10-20T01:45:51Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
本稿では, 交通量推定に関する2つの重要な問題について考察する。(1) 未検出運動による交通流の過小評価, (2) 渋滞伝播による非平衡交通流。
上記の問題に対処するために,データ駆動型,モデルフリー,相関適応型アプローチをグラフベースで実現するディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2023-03-10T02:22:33Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Physics-Informed Deep Learning for Traffic State Estimation [3.779860024918729]
交通状態推定(TSE)は、部分的に観測されたデータを用いて道路セグメント上の交通変数(例えば密度)を再構築する。
本論文では,少量の観測データを用いて高品質なTSEを効率的に実行するための物理情報深層学習(PIDL)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2021-01-17T03:28:32Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z) - A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation [13.48205738743634]
様々なセンサシステムから収集された時空間トラフィックデータには,データ計算の欠如が一般的である。
本稿では,各変数に対する最適解を求めるアルゴリズムを提案する。
提案したモデルは、他のベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2020-03-23T13:27:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。