AI-Enhanced Business Process Automation: A Case Study in the Insurance Domain Using Object-Centric Process Mining
- URL: http://arxiv.org/abs/2504.17295v1
- Date: Thu, 24 Apr 2025 06:43:29 GMT
- Title: AI-Enhanced Business Process Automation: A Case Study in the Insurance Domain Using Object-Centric Process Mining
- Authors: Shahrzad Khayatbashi, Viktor Sjölind, Anders Granåker, Amin Jalali,
- Abstract summary: This paper presents a case study from the insurance sector, where an LLM was deployed to automate the identification of claim parts.<n>We apply Object-Centric Process Mining (OCPM) to assess the impact of AI-driven automation on process scalability.<n>Our findings indicate that while LLMs significantly enhance operational capacity, they also introduce new process dynamics that require further refinement.
- Score: 0.7124736158080938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Artificial Intelligence (AI), particularly Large Language Models (LLMs), have enhanced organizations' ability to reengineer business processes by automating knowledge-intensive tasks. This automation drives digital transformation, often through gradual transitions that improve process efficiency and effectiveness. To fully assess the impact of such automation, a data-driven analysis approach is needed - one that examines how traditional and AI-enhanced process variants coexist during this transition. Object-Centric Process Mining (OCPM) has emerged as a valuable method that enables such analysis, yet real-world case studies are still needed to demonstrate its applicability. This paper presents a case study from the insurance sector, where an LLM was deployed in production to automate the identification of claim parts, a task previously performed manually and identified as a bottleneck for scalability. To evaluate this transformation, we apply OCPM to assess the impact of AI-driven automation on process scalability. Our findings indicate that while LLMs significantly enhance operational capacity, they also introduce new process dynamics that require further refinement. This study also demonstrates the practical application of OCPM in a real-world setting, highlighting its advantages and limitations.
Related papers
- WISE: Unraveling Business Process Metrics with Domain Knowledge [0.0]
Anomalies in complex industrial processes are often obscured by high variability and complexity of event data.
We introduce WISE, a novel method for analyzing business process metrics through the integration of domain knowledge, process mining, and machine learning.
We show that WISE enhances automation in business process analysis and effectively detects deviations from desired process flows.
arXiv Detail & Related papers (2024-10-06T07:57:08Z) - A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches) [4.499009117849108]
We perform a systematic review of academic literature to investigate the integration of AI/ML in business process management.
In business process management and process map, AI/ML has made significant improvements using operational data on process metrics.
arXiv Detail & Related papers (2024-07-07T18:26:00Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Explainable Artificial Intelligence for Improved Modeling of Processes [6.29494485203591]
We evaluate the capability of modern Transformer architectures and more classical Machine Learning technologies of modeling process regularities.
We show that the ML models are capable of predicting critical outcomes and that the attention mechanisms or XAI components offer new insights into the underlying processes.
arXiv Detail & Related papers (2022-12-01T17:56:24Z) - AI/ML Algorithms and Applications in VLSI Design and Technology [3.1171750528972204]
This paper reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing.
We discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design.
arXiv Detail & Related papers (2022-02-21T07:01:27Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.