論文の概要: Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+
- arxiv url: http://arxiv.org/abs/2504.17306v1
- Date: Thu, 24 Apr 2025 07:00:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.277889
- Title: Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+
- Title(参考訳): DeepLabv3+ を用いた糖尿病網膜症病変の高度分別
- Authors: Meher Boulaabi, Takwa Ben Aïcha Gader, Afef Kacem Echi, Sameh Mbarek,
- Abstract要約: 病変の種類ごとにバイナリセグメンテーション法を実装した。
切除後, 個々のモデル出力を1つの画像に組み合わせて, 病変のタイプをよりよく解析した。
提案手法はDeepLabv3+モデルを用いて,99%のセグメンテーション精度を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To improve the segmentation of diabetic retinopathy lesions (microaneurysms, hemorrhages, exudates, and soft exudates), we implemented a binary segmentation method specific to each type of lesion. As post-segmentation, we combined the individual model outputs into a single image to better analyze the lesion types. This approach facilitated parameter optimization and improved accuracy, effectively overcoming challenges related to dataset limitations and annotation complexity. Specific preprocessing steps included cropping and applying contrast-limited adaptive histogram equalization to the L channel of the LAB image. Additionally, we employed targeted data augmentation techniques to further refine the model's efficacy. Our methodology utilized the DeepLabv3+ model, achieving a segmentation accuracy of 99%. These findings highlight the efficacy of innovative strategies in advancing medical image analysis, particularly in the precise segmentation of diabetic retinopathy lesions. The IDRID dataset was utilized to validate and demonstrate the robustness of our approach.
- Abstract(参考訳): 糖尿病性網膜症 (微小動脈瘤, 出血, 排出液, 軟口蓋) のセグメンテーションを改善するため, 各病変に特異的な分節法を施行した。
切除後, 個々のモデル出力を1つの画像に組み合わせて, 病変のタイプをよりよく解析した。
このアプローチはパラメータの最適化と精度の向上を促進し、データセットの制限やアノテーションの複雑さに関する課題を効果的に克服した。
LAB画像のLチャネルにコントラスト制限適応ヒストグラム等化を適用した。
さらに,モデルの有効性をさらに高めるために,ターゲットデータ拡張手法を採用した。
提案手法はDeepLabv3+モデルを用いて,99%のセグメンテーション精度を実現した。
これらの知見は, 医用画像解析の進歩, 特に糖尿病網膜症病変の正確に分類における革新的戦略の有効性を浮き彫りにした。
IDRIDデータセットを用いて,我々のアプローチの堅牢性を検証し,実証した。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - AI-Driven Diabetic Retinopathy Diagnosis Enhancement through Image Processing and Salp Swarm Algorithm-Optimized Ensemble Network [5.001689778344014]
糖尿病網膜症は糖尿病患者の視覚障害の主要な原因であり、早期発見は視力喪失を防ぐ重要な役割を担っている。
本稿では, 画像前処理, バックボーン事前学習モデルの選択, 特徴強調, 最適化の4段階からなるDR診断のための効果的なアンサンブル法を提案する。
提案されたモデルは、マルチクラスKaggle APTOS 2019データセットで評価され、88.52%の精度が得られた。
論文 参考訳(メタデータ) (2025-03-18T12:35:56Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
糖尿病網膜症(DR: Diabetic Retinopathy)は、早期発見と治療の急激な必要性を浮き彫りにしている。
機械学習(ML)技術の最近の進歩は、DR検出における将来性を示しているが、ラベル付きデータの可用性は、しばしばパフォーマンスを制限している。
本研究では,DR検出に適したSemi-Supervised Graph Learning SSGLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-02T04:42:08Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
提案手法は, 進歩的半教師付き学習, 適応的学習戦略, 境界拡張など, 革新的な手法を取り入れたものである。
3DRAデータセットによる実験結果から,メッシュベースのセグメンテーション指標を用いて,本手法の優位性を示す。
論文 参考訳(メタデータ) (2023-08-07T14:16:52Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
臨床ではCT(Computed tomography)とPET(positron emission tomography)が異常リンパ節(LN)を検出する
深層畳み込みニューラルネットワークは、しばしば医療写真にアイテムを分割する。
良質な深層学習手法であるUNetは、縦隔リンパ節の分節と検出のための戦略に基づいて、双線形および全一般化変異(TGV)を用いて修正された。
修正されたUNetはテクスチャの不連続を維持し、ノイズの多い領域を選択し、バックプロパゲーションを通じて適切なバランスポイントを検索し、画像の解像度を再現する。
論文 参考訳(メタデータ) (2022-11-24T02:55:20Z) - Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to
Overcome Data Scarcity [6.802798389355481]
糖尿病網膜症 (DR) 解析課題として, 病変分割, 画像品質評価, DRグレーディングについて検討した。
各タスクに対して,アンサンブル学習,データ強化,半教師付き学習を活用した堅牢な学習手法を導入する。
疑似ラベルの負の効果を低減するため,モデルの信頼度スコアに基づいて不確実な擬似ラベルを除外する信頼性の高い擬似ラベルを提案する。
論文 参考訳(メタデータ) (2022-10-18T03:25:00Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。