論文の概要: Dargana: fine-tuning EarthPT for dynamic tree canopy mapping from space
- arxiv url: http://arxiv.org/abs/2504.17321v1
- Date: Thu, 24 Apr 2025 07:23:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.284663
- Title: Dargana: fine-tuning EarthPT for dynamic tree canopy mapping from space
- Title(参考訳): Dargana: 宇宙からの動的樹冠マッピングのための微調整EarthPT
- Authors: Michael J. Smith, Luke Fleming, James E. Geach, Ryan J. Roberts, Freddie Kalaitzis, James Banister,
- Abstract要約: ダルガナは微調整され、10mの解像度で定期的に更新された樹冠被覆の分類を生成する。
テストケースとしてイギリスのコーンウォールを用いて、このモデルは0.98ピクセルレベルのROC-AUCと0.83ピクセルのPR-AUCを達成している。
- 参考スコア(独自算出の注目度): 1.099532646524593
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present Dargana, a fine-tuned variant of the EarthPT time-series foundation model that achieves specialisation using <3% of its pre-training data volume and 5% of its pre-training compute. Dargana is fine-tuned to generate regularly updated classification of tree canopy cover at 10m resolution, distinguishing conifer and broadleaved tree types. Using Cornwall, UK, as a test case, the model achieves a pixel-level ROC-AUC of 0.98 and a PR-AUC of 0.83 on unseen satellite imagery. Dargana can identify fine structures like hedgerows and coppice below the training sample limit, and can track temporal changes to canopy cover such as new woodland establishment. Our results demonstrate how pre-trained Large Observation Models like EarthPT can be specialised for granular, dynamic land cover monitoring from space, providing a valuable, scalable tool for natural capital management and conservation.
- Abstract(参考訳): 本稿では, EarthPT の時系列基礎モデルの微調整版である Dargana について述べる。
ダルガナは、針葉樹と広葉樹を区別し、10mの解像度で定期的に更新された樹冠被覆の分類を生成するように微調整されている。
テストケースとしてイギリスのコーンウォールを用いて、このモデルは0.98ピクセルレベルのROC-AUCと0.83ピクセルのPR-AUCを達成している。
ダーガナは、訓練サンプルの限界下にあるヒゲやコピックのような微細な構造を識別でき、新しい森林施設のような天蓋への時間的変化を追跡することができる。
以上の結果から,EarthPTのような事前学習型大規模観測モデルが宇宙からの粒度の動的土地被覆監視に特化できることが示され,自然資本管理と保全のための価値の高いスケーラブルなツールが提供される。
関連論文リスト
- Depth Any Canopy: Leveraging Depth Foundation Models for Canopy Height Estimation [4.69726714177332]
世界樹高の推定は森林保全と気候変動の応用に不可欠である。
効率的な代替手段として、キャノピーの高さ推定器を訓練して、単一ビューのリモートセンシング画像を操作する方法がある。
近年の単眼深度推定基礎モデルでは,複雑なシーンにおいても強いゼロショット性能を示した。
論文 参考訳(メタデータ) (2024-08-08T15:24:07Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Treesは時系列モデルのパラメータを学習するために設計されている。
対象とする時系列モデルのパラメータを特徴に関連付けることで、Hyper-Treesはパラメータ非定常性の問題にも対処する。
この新しいアプローチでは、木はまず入力特徴から情報表現を生成し、浅いネットワークはターゲットモデルパラメータにマップする。
論文 参考訳(メタデータ) (2024-05-13T15:22:15Z) - Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning [1.6889377382676625]
我々は、自由に利用可能な衛星画像について、個々の低木デラインの大規模なデータセットをリリースする。
我々は、すべてのジュニパーを、全生物圏保護区のツリーライン上にマッピングするために、インスタンスセグメンテーションモデルを使用します。
我々のモデルは、PIデータで87.87%、FWデータで76.86%の低木でF1スコアを達成した。
論文 参考訳(メタデータ) (2024-01-31T16:44:20Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - The Canadian Cropland Dataset: A New Land Cover Dataset for
Multitemporal Deep Learning Classification in Agriculture [0.8602553195689513]
カナディアン・クロップ・インベントリー (Canadian Annual Crop Inventory) から回収されたラベルで濃縮されたカナダの作物の時間的パッチベースのデータセット。
このデータセットは、4年間にわたって収集された10種類の作物から,78,536個の高解像度空間像を手作業で検証した。
ベンチマークとして,単一画像(ResNet,DenseNet,EfficientNet)や画像列(LRCN,3D-CNN)を同一位置から予測可能なモデルとソースコードを提供する。
論文 参考訳(メタデータ) (2023-05-31T18:40:15Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Classification and mapping of low-statured 'shrubland' cover types in
post-agricultural landscapes of the US Northeast [0.0]
新たな植物群落は景観を再構築し、土地被覆分類と地図作成の課題を提起する。
アメリカ北東部では、低木林(低木林)の出現はよく文書化されているが、景観の観点からはあまり理解されていない。
我々はニューヨーク州全体で30mの解像度で低木分布を予測するモデルを開発した。
論文 参考訳(メタデータ) (2022-05-09T14:54:41Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Accuracy Prediction with Non-neural Model for Neural Architecture Search [185.0651567642238]
精度予測に非神経モデルを用いる別の手法について検討する。
我々は、ニューラルネットワーク探索(NAS)の予測因子として、勾配向上決定木(GBDT)を活用する。
NASBench-101とImageNetの実験は、NASの予測器としてGBDTを使用することの有効性を示した。
論文 参考訳(メタデータ) (2020-07-09T13:28:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。