Data-Driven Surrogate Modeling Techniques to Predict the Effective Contact Area of Rough Surface Contact Problems
- URL: http://arxiv.org/abs/2504.17354v1
- Date: Thu, 24 Apr 2025 08:15:46 GMT
- Title: Data-Driven Surrogate Modeling Techniques to Predict the Effective Contact Area of Rough Surface Contact Problems
- Authors: Tarik Sahin, Jacopo Bonari, Sebastian Brandstaeter, Alexander Popp,
- Abstract summary: The effective contact area plays a critical role in multi-physics phenomena such as wear, sealing, and thermal or electrical conduction.<n>This study proposes a surrogate modeling framework for predicting the effective contact area using fast-to-evaluate data-driven techniques.
- Score: 39.979007027634196
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The effective contact area in rough surface contact plays a critical role in multi-physics phenomena such as wear, sealing, and thermal or electrical conduction. Although accurate numerical methods, like the Boundary Element Method (BEM), are available to compute this quantity, their high computational cost limits their applicability in multi-query contexts, such as uncertainty quantification, parameter identification, and multi-scale algorithms, where many repeated evaluations are required. This study proposes a surrogate modeling framework for predicting the effective contact area using fast-to-evaluate data-driven techniques. Various machine learning algorithms are trained on a precomputed dataset, where the inputs are the imposed load and statistical roughness parameters, and the output is the corresponding effective contact area. All models undergo hyperparameter optimization to enable fair comparisons in terms of predictive accuracy and computational efficiency, evaluated using established quantitative metrics. Among the models, the Kernel Ridge Regressor demonstrates the best trade-off between accuracy and efficiency, achieving high predictive accuracy, low prediction time, and minimal training overhead-making it a strong candidate for general-purpose surrogate modeling. The Gaussian Process Regressor provides an attractive alternative when uncertainty quantification is required, although it incurs additional computational cost due to variance estimation. The generalization capability of the Kernel Ridge model is validated on an unseen simulation scenario, confirming its ability to transfer to new configurations. Database generation constitutes the dominant cost in the surrogate modeling process. Nevertheless, the approach proves practical and efficient for multi-query tasks, even when accounting for this initial expense.
Related papers
- Towards Precision in Bolted Joint Design: A Preliminary Machine Learning-Based Parameter Prediction [0.0]
Bolted joints are critical in engineering for maintaining structural integrity and reliability.<n>Traditional methods often fail to capture the non-linear behavior of bolted joints.<n>This study combines empirical data with a feed-forward neural network to predict load capacity and friction coefficients.
arXiv Detail & Related papers (2024-12-11T11:00:39Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Optimal design of experiments in the context of machine-learning inter-atomic potentials: improving the efficiency and transferability of kernel based methods [0.7234862895932991]
Data-driven, machine learning (ML) models of atomistic interactions can relate nuanced aspects of atomic arrangements into predictions of energies and forces.
The main challenge stems from the fact that descriptors of chemical environments are often sparse high-dimensional objects without a well-defined continuous metric.
We will demonstrate that classical concepts of statistical planning of experiments and optimal design can help to mitigate such problems at a relatively low computational cost.
arXiv Detail & Related papers (2024-05-14T14:14:23Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - Efficient Learning of Accurate Surrogates for Simulations of Complex Systems [0.0]
We introduce an online learning method empowered by sampling-driven sampling.
It ensures that all turning points on the model response surface are included in the training data.
We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates can be reliably auto-generated.
arXiv Detail & Related papers (2022-07-11T20:51:11Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
Multifidelity approximation is an important technique in scientific computation and simulation.
We introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates.
arXiv Detail & Related papers (2021-03-29T05:29:35Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.