論文の概要: CHASe: Client Heterogeneity-Aware Data Selection for Effective Federated Active Learning
- arxiv url: http://arxiv.org/abs/2504.17448v1
- Date: Thu, 24 Apr 2025 11:28:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.340913
- Title: CHASe: Client Heterogeneity-Aware Data Selection for Effective Federated Active Learning
- Title(参考訳): CHASe: 効果的なフェデレーションアクティブラーニングのためのクライアント不均一性を考慮したデータ選択
- Authors: Jun Zhang, Jue Wang, Huan Li, Zhongle Xie, Ke Chen, Lidan Shou,
- Abstract要約: フェデレートアクティブラーニング(FAL)に特化して設計されたCHASe (Client Heterogeneity-Aware Data Selection)を提案する。
CHASeは、トレーニング中の意思決定の境界を揺らぎながら、高い疫学変化(EV)を持つラベルのないサンプルを特定することに重点を置いている。
実験により、CHASeは、さまざまなデータセット、モデル複雑度、異種フェデレーション設定にまたがって検証される、有効性と効率の観点から、確立されたさまざまなベースラインを超えることが示されている。
- 参考スコア(独自算出の注目度): 22.38403602956309
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Active learning (AL) reduces human annotation costs for machine learning systems by strategically selecting the most informative unlabeled data for annotation, but performing it individually may still be insufficient due to restricted data diversity and annotation budget. Federated Active Learning (FAL) addresses this by facilitating collaborative data selection and model training, while preserving the confidentiality of raw data samples. Yet, existing FAL methods fail to account for the heterogeneity of data distribution across clients and the associated fluctuations in global and local model parameters, adversely affecting model accuracy. To overcome these challenges, we propose CHASe (Client Heterogeneity-Aware Data Selection), specifically designed for FAL. CHASe focuses on identifying those unlabeled samples with high epistemic variations (EVs), which notably oscillate around the decision boundaries during training. To achieve both effectiveness and efficiency, \model{} encompasses techniques for 1) tracking EVs by analyzing inference inconsistencies across training epochs, 2) calibrating decision boundaries of inaccurate models with a new alignment loss, and 3) enhancing data selection efficiency via a data freeze and awaken mechanism with subset sampling. Experiments show that CHASe surpasses various established baselines in terms of effectiveness and efficiency, validated across diverse datasets, model complexities, and heterogeneous federation settings.
- Abstract(参考訳): アクティブラーニング(AL)は、アノテーションのための最も情報に富まないデータを戦略的に選択することで、機械学習システムの人為的なアノテーションコストを削減します。
Federated Active Learning (FAL)は、生データサンプルの機密性を保ちながら、協調的なデータ選択とモデルトレーニングを容易にすることで、この問題に対処する。
しかし、既存のFAL手法では、クライアント間のデータ分散の不均一性や、大域的および局所的なモデルパラメータのゆらぎを考慮せず、モデル精度に悪影響を及ぼす。
これらの課題を克服するために、FAL用に特別に設計されたCHASe(Client Heterogeneity-Aware Data Selection)を提案する。
CHASeは、トレーニング中の意思決定の境界を揺らぎながら、高い疫学変化(EV)を持つラベルのないサンプルを特定することに重点を置いている。
有効性と効率の両方を達成するために、 \model{} はテクニックを包含する
1)トレーニングエポック間の推論の不整合を分析してEVを追跡すること。
2 新たなアライメント損失を伴う不正確なモデルの判断境界の校正及び
3) サブセットサンプリングによるデータ凍結および起動機構によるデータ選択効率の向上。
実験により、CHASeは、さまざまなデータセット、モデル複雑度、異種フェデレーション設定にまたがって検証される、有効性と効率の観点から、確立されたさまざまなベースラインを超えることが示されている。
関連論文リスト
- FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
ユーザの行動、好み、デバイス特性の相違から生じるデータの異質性は、連合学習にとって重要な課題である。
本稿では,学習過程におけるクライアントベクトルに基づくアダプティブ重み付けを適応的に調整する手法であるAdaptive Weight Aggregation (FedAWA)を提案する。
論文 参考訳(メタデータ) (2025-03-20T04:49:40Z) - HFedCKD: Toward Robust Heterogeneous Federated Learning via Data-free Knowledge Distillation and Two-way Contrast [10.652998357266934]
データフリーな知識蒸留と双方向コントラスト(HFedCKD)に基づくヘテロジニアスフェデレーション方式を提案する。
HFedCKDは、データフリーな知識蒸留における低い参加率による知識オフセットを効果的に軽減し、モデルの性能と安定性を向上させる。
我々は画像とIoTデータセットに関する広範な実験を行い、提案したHFedCKDフレームワークの一般化と堅牢性を包括的に評価し、検証する。
論文 参考訳(メタデータ) (2025-03-09T08:32:57Z) - Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation [19.620523416385346]
ソースフリーアクティブドメイン適応(SFADA)は、ソースデータにアクセスせずに、トレーニング済みのモデルを新しいドメインに適応するという課題に対処する。
このシナリオは、データプライバシ、ストレージ制限、ラベル付けコストが重要な懸念事項である現実世界のアプリケーションに特に関係している。
Propensity-driven Uncertainty Learning (ProULearn) フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-23T10:05:25Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
産業用IoT(Industrial Internet of Things)における各種エンティティからの十分なトレーニングデータの収集と集中化は難しい。
フェデレートラーニング(FL)は、クライアント間で協調的なグローバルモデルトレーニングを可能にするソリューションを提供する。
我々は,Adversarial Federated Consensus Learning (AFedCL) という新しいFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:59:32Z) - One-Shot Heterogeneous Federated Learning with Local Model-Guided Diffusion Models [40.83058938096914]
FedLMGは局所モデル誘導拡散モデルを用いた単発フェデレーション学習法である。
クライアントはファンデーションモデルにアクセスする必要はなく、ローカルモデルのトレーニングとアップロードのみを行う。
論文 参考訳(メタデータ) (2023-11-15T11:11:25Z) - Adapter-based Selective Knowledge Distillation for Federated
Multi-domain Meeting Summarization [36.916155654985936]
会議要約は、利用者に凝縮した要約を提供するための有望な手法として登場した。
本稿では,適応型選択的知識蒸留法(AdaFedSelecKD)を提案する。
論文 参考訳(メタデータ) (2023-08-07T03:34:01Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。