論文の概要: Adaptive Orchestration of Modular Generative Information Access Systems
- arxiv url: http://arxiv.org/abs/2504.17454v1
- Date: Thu, 24 Apr 2025 11:35:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.343983
- Title: Adaptive Orchestration of Modular Generative Information Access Systems
- Title(参考訳): モジュール生成情報アクセスシステムの適応オーケストレーション
- Authors: Mohanna Hoveyda, Harrie Oosterhuis, Arjen P. de Vries, Maarten de Rijke, Faegheh Hasibi,
- Abstract要約: 将来のモジュラー生成情報アクセスシステムのアーキテクチャは、単に強力なコンポーネントを組み立てるだけでなく、自己組織化システムを実現するだろう、と我々は主張する。
この観点は、IRコミュニティに適応的で自己最適化的で将来的なアーキテクチャを開発するためのモジュラーシステム設計を再考するよう促す。
- 参考スコア(独自算出の注目度): 59.102816309859584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in large language models (LLMs) have driven the emergence of complex new systems to provide access to information, that we will collectively refer to as modular generative information access (GenIA) systems. They integrate a broad and evolving range of specialized components, including LLMs, retrieval models, and a heterogeneous set of sources and tools. While modularity offers flexibility, it also raises critical challenges: How can we systematically characterize the space of possible modules and their interactions? How can we automate and optimize interactions among these heterogeneous components? And, how do we enable this modular system to dynamically adapt to varying user query requirements and evolving module capabilities? In this perspective paper, we argue that the architecture of future modular generative information access systems will not just assemble powerful components, but enable a self-organizing system through real-time adaptive orchestration -- where components' interactions are dynamically configured for each user input, maximizing information relevance while minimizing computational overhead. We give provisional answers to the questions raised above with a roadmap that depicts the key principles and methods for designing such an adaptive modular system. We identify pressing challenges, and propose avenues for addressing them in the years ahead. This perspective urges the IR community to rethink modular system designs for developing adaptive, self-optimizing, and future-ready architectures that evolve alongside their rapidly advancing underlying technologies.
- Abstract(参考訳): 大規模言語モデル(LLM)の進歩は、情報へのアクセスを提供する複雑な新システムの出現を招き、まとめてモジュール生成情報アクセス(GenIA)システムと呼ぶ。
LLM、検索モデル、多種多様なソースやツールなど、広範囲で進化する特殊なコンポーネントを統合している。
モジュール性は柔軟性を提供するが、重要な課題も生じている。
これらの異種コンポーネント間のインタラクションの自動化と最適化にはどうすればよいのか?
そして、このモジュールシステムは、どのようにして様々なユーザクエリ要求に動的に適応し、モジュール機能を進化させるのか?
本稿では,将来のモジュール型生成情報アクセスシステムのアーキテクチャは,単に強力なコンポーネントを組み立てるだけでなく,リアルタイム適応オーケストレーションによる自己組織化システムを実現することができる,と論じる。
このような適応的なモジュールシステムを設計するための重要な原則と方法を描いたロードマップで、上記の質問に対して暫定的な回答を与えます。
プレスの課題を特定し、今後数年で対処するための道を提案する。
この視点はIRコミュニティに、急速に進歩している基盤技術と共に進化する適応的で自己最適化された未来のアーキテクチャを開発するためのモジュラーシステム設計を再考するよう促す。
関連論文リスト
- Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
我々は、構造化出力、プロセスの監督、テストタイム計算など、これまでの分野の進歩について論じる。
モジュール型かつ信頼性の高いLCMシステムの開発に向けた研究の今後の方向性について概説する。
論文 参考訳(メタデータ) (2024-11-25T07:48:31Z) - Creating Scalable AGI: the Open General Intelligence Framework [0.0]
Open General Intelligence (OGI)は、Artificial General Intelligence (AGI)のマクロデザイン参照として機能する新しいシステムアーキテクチャである。
OGIは、単一のシステムとしてシームレスに動作可能な複数の特別なモジュール間で認識が実行されなければならないという前提に基づいて、インテリジェントシステムの設計にモジュラーアプローチを採用する。
OGIフレームワークは、今日のインテリジェントシステムで見られる課題を克服し、より包括的でコンテキスト対応の問題解決能力を実現することを目的としている。
論文 参考訳(メタデータ) (2024-11-24T13:17:53Z) - PROMISE: A Framework for Developing Complex Conversational Interactions (Technical Report) [33.7054351451505]
本稿では,情報システムとの複雑な言語によるインタラクションを開発するためのフレームワークであるPROMISEを提案する。
本稿では、健康情報システムにおけるアプリケーションシナリオの文脈におけるPROMISEの利点を示し、複雑なインタラクションを扱う能力を示す。
論文 参考訳(メタデータ) (2023-12-06T18:59:11Z) - Modular Deep Learning [120.36599591042908]
トランスファーラーニングは近年、機械学習の主要なパラダイムとなっている。
負の干渉を伴わずに複数のタスクを専門とするモデルを開発する方法はまだ不明である。
これらの課題に対する有望な解決策として、モジュール型ディープラーニングが登場した。
論文 参考訳(メタデータ) (2023-02-22T18:11:25Z) - Is a Modular Architecture Enough? [80.32451720642209]
我々は、シンプルで既知のモジュラーデータ分散のレンズを通して、共通のモジュラーアーキテクチャを徹底的に評価する。
モジュール化と疎結合のメリットを強調し、モジュール化システムの最適化において直面する課題に関する洞察を明らかにします。
論文 参考訳(メタデータ) (2022-06-06T16:12:06Z) - Fast and Slow Learning of Recurrent Independent Mechanisms [80.38910637873066]
本稿では,エージェントが必要とする知識の断片と報酬関数が定常的であり,タスク間で再利用可能なトレーニングフレームワークを提案する。
注意機構は、どのモジュールを現在のタスクに適応できるかを動的に選択する。
提案方式のモジュール的側面のメタラーニングは,強化学習装置の高速化に大きく寄与することがわかった。
論文 参考訳(メタデータ) (2021-05-18T17:50:32Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。