論文の概要: Specifications: The missing link to making the development of LLM systems an engineering discipline
- arxiv url: http://arxiv.org/abs/2412.05299v2
- Date: Mon, 16 Dec 2024 08:17:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:53:29.588319
- Title: Specifications: The missing link to making the development of LLM systems an engineering discipline
- Title(参考訳): 仕様:LLMシステムの開発を工学分野にすることへの欠落へのリンク
- Authors: Ion Stoica, Matei Zaharia, Joseph Gonzalez, Ken Goldberg, Koushik Sen, Hao Zhang, Anastasios Angelopoulos, Shishir G. Patil, Lingjiao Chen, Wei-Lin Chiang, Jared Q. Davis,
- Abstract要約: 我々は、構造化出力、プロセスの監督、テストタイム計算など、これまでの分野の進歩について論じる。
モジュール型かつ信頼性の高いLCMシステムの開発に向けた研究の今後の方向性について概説する。
- 参考スコア(独自算出の注目度): 65.10077876035417
- License:
- Abstract: Despite the significant strides made by generative AI in just a few short years, its future progress is constrained by the challenge of building modular and robust systems. This capability has been a cornerstone of past technological revolutions, which relied on combining components to create increasingly sophisticated and reliable systems. Cars, airplanes, computers, and software consist of components-such as engines, wheels, CPUs, and libraries-that can be assembled, debugged, and replaced. A key tool for building such reliable and modular systems is specification: the precise description of the expected behavior, inputs, and outputs of each component. However, the generality of LLMs and the inherent ambiguity of natural language make defining specifications for LLM-based components (e.g., agents) both a challenging and urgent problem. In this paper, we discuss the progress the field has made so far-through advances like structured outputs, process supervision, and test-time compute-and outline several future directions for research to enable the development of modular and reliable LLM-based systems through improved specifications.
- Abstract(参考訳): 生成AIによるほんの数年の大幅な進歩にもかかわらず、将来の進歩はモジュラーとロバストなシステムの構築という課題によって制約されている。
この能力は、ますます高度で信頼性の高いシステムを構築するためにコンポーネントを組み合わせることに依存する、過去の技術革命の基盤となった。
自動車、飛行機、コンピュータ、ソフトウェアは、エンジン、車輪、CPU、ライブラリーなどのコンポーネントで構成されており、組み立て、デバッグ、交換が可能である。
このような信頼性とモジュラーシステムを構築するための重要なツールは仕様であり、期待される振る舞い、入力、各コンポーネントの出力の正確な記述である。
しかし、LLMの一般化と自然言語固有のあいまいさは、LLMベースのコンポーネント(例えばエージェント)の仕様を定義するのに困難かつ緊急な問題である。
本稿では,構造化出力,プロセスの監督,テストタイム計算など,これまでの分野の進歩について論じるとともに,改良された仕様を通じてモジュール型かつ信頼性の高いLCMシステムの開発を可能にする研究の今後の方向性について概説する。
関連論文リスト
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
LLM(Large Language Model)は、PythonやC++などのプログラミング言語に使用される。
本稿では,LLMを利用してHLS(High-Level Synthesis)ベースのハードウェア設計を行う。
論文 参考訳(メタデータ) (2025-02-19T17:53:59Z) - LLMs for Generation of Architectural Components: An Exploratory Empirical Study in the Serverless World [0.0]
本稿では,関数・アズ・ア・サービス(F)のためのアーキテクチャコンポーネントを生成するための大規模言語モデルの有用性について検討する。
アーキテクチャコンポーネントの小さなサイズは、このアーキテクチャスタイルを現在のLLMを使って生成可能にする。
我々は、リポジトリに存在する既存のテストを通じて正確性を評価し、ソフトウェア工学(SE)と自然言語処理(NLP)ドメインのメトリクスを使用する。
論文 参考訳(メタデータ) (2025-02-04T18:06:04Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - Configurable Foundation Models: Building LLMs from a Modular Perspective [115.63847606634268]
LLMを多数の機能モジュールに分解する傾向が高まり、複雑なタスクに取り組むためにモジュールの一部とモジュールの動的アセンブリを推論することができる。
各機能モジュールを表すブロックという用語を造語し、モジュール化された構造をカスタマイズ可能な基礎モデルとして定義する。
検索とルーティング,マージ,更新,成長という,レンガ指向の4つの操作を提示する。
FFN層はニューロンの機能的特殊化と機能的ニューロン分割を伴うモジュラーパターンに従うことが判明した。
論文 参考訳(メタデータ) (2024-09-04T17:01:02Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。