Combining GCN Structural Learning with LLM Chemical Knowledge for Enhanced Virtual Screening
- URL: http://arxiv.org/abs/2504.17497v2
- Date: Sat, 26 Apr 2025 11:37:05 GMT
- Title: Combining GCN Structural Learning with LLM Chemical Knowledge for Enhanced Virtual Screening
- Authors: Radia Berreziga, Mohammed Brahimi, Khairedine Kraim, Hamid Azzoune,
- Abstract summary: We propose a hybrid architecture that combines localized structural learning with global chemical knowledge.<n>We found that concatenating the LLM embeddings after each GCN layer-rather than only at the final layer-significantly improves performance.<n>The resulting model achieves superior results, with an F1-score of (88.8%), outperforming standalone GCN (87.9%), XGBoost (85.5%), and SVM (85.4%) baselines.
- Score: 0.562479170374811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Virtual screening plays a critical role in modern drug discovery by enabling the identification of promising candidate molecules for experimental validation. Traditional machine learning methods such, as Support Vector Machines (SVM) and XGBoost, rely on predefined molecular representations, often leading to information loss and potential bias. In contrast, deep learning approaches-particularly Graph Convolutional Networks (GCNs)-offer a more expressive and unbiased alternative by operating directly on molecular graphs. Meanwhile, Large Language Models (LLMs) have recently demonstrated state-of-the-art performance in drug design, thanks to their capacity to capture complex chemical patterns from large-scale data via attention mechanisms. In this paper, we propose a hybrid architecture that integrates GCNs with LLM-derived embeddings to combine localized structural learning with global chemical knowledge. The LLM embeddings can be precomputed and stored in a molecular feature library, removing the need to rerun the LLM during training or inference and thus maintaining computational efficiency. We found that concatenating the LLM embeddings after each GCN layer-rather than only at the final layer-significantly improves performance, enabling deeper integration of global context throughout the network. The resulting model achieves superior results, with an F1-score of (88.8\%), outperforming standalone GCN (87.9%), XGBoost (85.5%), and SVM (85.4%) baselines.
Related papers
- MolGraph-xLSTM: A graph-based dual-level xLSTM framework with multi-head mixture-of-experts for enhanced molecular representation and interpretability [9.858315463084084]
MolGraph-xLSTM is a graph-based xLSTM model that enhances feature extraction and effectively models molecule long-range interactions.
Our approach processes molecular graphs at two scales: atom-level and motif-level.
We validate MolGraph-xLSTM on 10 molecular property prediction datasets, covering both classification and regression tasks.
arXiv Detail & Related papers (2025-01-30T15:47:59Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training [48.455597568212944]
We present Mono-InternVL, a novel monolithic MLLM that seamlessly integrates a set of visual experts via a multimodal mixture-of-experts structure.<n>In particular, EViP is designed as a progressive learning process for visual experts, which aims to fully exploit the visual knowledge from noisy data to high-quality data.
arXiv Detail & Related papers (2024-10-10T17:59:22Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.<n>We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.<n>Experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
We introduce a Multi-Modal Fusion (MMF) framework that harnesses the analytical prowess of Graph Neural Networks (GNNs) and the linguistic generative and predictive abilities of Large Language Models (LLMs)
Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting.
arXiv Detail & Related papers (2024-08-27T11:10:39Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Enhancing Cognitive Workload Classification Using Integrated LSTM Layers and CNNs for fNIRS Data Analysis [13.74551296919155]
This paper explores the im-pact of Long Short-Term Memory layers on the effectiveness of Convolutional Neural Networks (CNNs) within deep learning models.
By integrating LSTM layers, the model can capture temporal dependencies in the fNIRS data, al-lowing for a more comprehensive understanding of cognitive states.
arXiv Detail & Related papers (2024-07-22T11:28:34Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - LLM and GNN are Complementary: Distilling LLM for Multimodal Graph Learning [26.980622926162933]
We present an innovative framework that utilizes multimodal molecular data to extract insights from Large Language Models (LLMs)
We introduce GALLON, a framework that synergizes the capabilities of LLMs and Graph Neural Networks (GNNs) by distilling multimodal knowledge into a unified Multilayer Perceptron (MLP)
arXiv Detail & Related papers (2024-06-03T06:33:51Z) - A Theoretical Analysis of Self-Supervised Learning for Vision Transformers [66.08606211686339]
Masked autoencoders (MAE) and contrastive learning (CL) capture different types of representations.<n>We study the training dynamics of one-layer softmax-based vision transformers (ViTs) on both MAE and CL objectives.
arXiv Detail & Related papers (2024-03-04T17:24:03Z) - Accelerating Molecular Graph Neural Networks via Knowledge Distillation [1.9116784879310031]
Recent advances in graph neural networks (GNNs) have enabled more comprehensive modeling of molecules and molecular systems.
As the field has been progressing to bigger and more complex architectures, state-of-the-art GNNs have become largely prohibitive for many large-scale applications.
We devise KD strategies that facilitate the distillation of hidden representations in directional and equivariant GNNs, and evaluate their performance on the regression task of energy and force prediction.
arXiv Detail & Related papers (2023-06-26T16:24:31Z) - Improving Molecular Contrastive Learning via Faulty Negative Mitigation
and Decomposed Fragment Contrast [17.142976840521264]
We propose iMolCLR: improvement of Molecular Contrastive Learning of Representations with graph neural networks (GNNs)
Experiments have shown that the proposed strategies significantly improve the performance of GNN models.
iMolCLR intrinsically embeds scaffolds and functional groups that can reason molecule similarities.
arXiv Detail & Related papers (2022-02-18T18:33:27Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.