A Theoretical Analysis of Self-Supervised Learning for Vision Transformers
- URL: http://arxiv.org/abs/2403.02233v3
- Date: Wed, 05 Feb 2025 14:22:26 GMT
- Title: A Theoretical Analysis of Self-Supervised Learning for Vision Transformers
- Authors: Yu Huang, Zixin Wen, Yuejie Chi, Yingbin Liang,
- Abstract summary: Masked autoencoders (MAE) and contrastive learning (CL) capture different types of representations.<n>We study the training dynamics of one-layer softmax-based vision transformers (ViTs) on both MAE and CL objectives.
- Score: 66.08606211686339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning has become a cornerstone in computer vision, primarily divided into reconstruction-based methods like masked autoencoders (MAE) and discriminative methods such as contrastive learning (CL). Recent empirical observations reveal that MAE and CL capture different types of representations: CL tends to focus on global patterns, while MAE adeptly captures both global and subtle local information simultaneously. Despite a flurry of recent empirical investigations to shed light on this difference, theoretical understanding remains limited, especially on the dominant architecture vision transformers (ViTs). In this paper, to provide rigorous insights, we model the visual data distribution by considering two types of spatial features: dominant global features and comparatively minuscule local features, and study the impact of imbalance among these features. We analyze the training dynamics of one-layer softmax-based ViTs on both MAE and CL objectives using gradient descent. Our analysis shows that as the degree of feature imbalance varies, ViTs trained with the MAE objective effectively learn both global and local features to achieve near-optimal reconstruction, while the CL-trained ViTs favor predominantly global features, even under mild imbalance. These results provide a theoretical explanation for distinct behaviors of MAE and CL observed in empirical studies.
Related papers
- StructFormer: Document Structure-based Masked Attention and its Impact on Language Model Pre-Training [20.79815837785261]
This study focuses on empirically assessing the influence of global attention on BERT pre-training.
We create an extensive corpus of structure-aware text through arXiv data, alongside a text-only counterpart.
Our analysis underscores the significance of incorporating document structure into LM models, demonstrating their capacity to excel in more abstract tasks.
arXiv Detail & Related papers (2024-11-25T17:57:52Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning [36.92660589442233]
Multi-task learning (MTL) aims to improve the generalization performance of a model on multiple related tasks by training it simultaneously on those tasks.
Continual learning (CL) involves adapting to new sequentially arriving tasks over time without forgetting the previously acquired knowledge.
We develop theoretical results describing the effect of various system parameters on the model's performance in an MTL setup.
Our results reveal the impact of buffer size and model capacity on the forgetting rate in a CL setup and help shed light on some of the state-of-the-art CL methods.
arXiv Detail & Related papers (2024-08-29T23:22:40Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Balanced Multi-Relational Graph Clustering [5.531383184058319]
Multi-relational graph clustering has demonstrated remarkable success in uncovering underlying patterns in complex networks.
Our empirical study finds the pervasive presence of imbalance in real-world graphs, which is in principle contradictory to the motivation of alignment.
We propose Balanced Multi-Relational Graph Clustering (BMGC), comprising unsupervised dominant view mining and dual signals guided representation learning.
arXiv Detail & Related papers (2024-07-23T22:11:13Z) - On the Universal Truthfulness Hyperplane Inside LLMs [27.007142483859162]
We investigate whether a universal truthfulness hyperplane that distinguishes the model's factually correct and incorrect outputs exists within the model.
Our results indicate that increasing the diversity of the training datasets significantly enhances the performance in all scenarios.
arXiv Detail & Related papers (2024-07-11T15:07:26Z) - CorrMAE: Pre-training Correspondence Transformers with Masked Autoencoder [44.94921073819524]
We propose a pre-training method to acquire a generic inliers-consistent representation by reconstructing masked correspondences.
In practice, we introduce CorrMAE, an extension of the mask autoencoder framework tailored for the pre-training of correspondence pruning.
arXiv Detail & Related papers (2024-06-09T13:14:00Z) - What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
Severe data imbalance naturally exists among web-scale vision-language datasets.
We find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning.
The robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts.
arXiv Detail & Related papers (2024-05-31T17:57:24Z) - On the Generalization Ability of Unsupervised Pretraining [53.06175754026037]
Recent advances in unsupervised learning have shown that unsupervised pre-training, followed by fine-tuning, can improve model generalization.
This paper introduces a novel theoretical framework that illuminates the critical factor influencing the transferability of knowledge acquired during unsupervised pre-training to the subsequent fine-tuning phase.
Our results contribute to a better understanding of unsupervised pre-training and fine-tuning paradigm, and can shed light on the design of more effective pre-training algorithms.
arXiv Detail & Related papers (2024-03-11T16:23:42Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Understanding the Robustness of Multi-modal Contrastive Learning to Distribution Shift [14.641747166801133]
multimodal contrastive learning approaches, such as CLIP, have achieved a remarkable success in learning representations that are robust against distribution shift.
We identify two mechanisms behind MMCL's robustness: emphintra-class contrasting and emphinter-class feature sharing.
We theoretically demonstrate the benefits of using rich captions on robustness and explore the effect of annotating different types of details in the captions.
arXiv Detail & Related papers (2023-10-08T02:25:52Z) - Unsupervised discovery of Interpretable Visual Concepts [0.0]
We propose two methods to explain a model's decision, enhancing global interpretability.
One method is inspired by Occlusion and Sensitivity analysis (incorporating causality)
The other method uses a novel metric, called Class-aware Order Correlation (CaOC), to globally evaluate the most important image regions.
arXiv Detail & Related papers (2023-08-31T07:53:02Z) - Forecast-MAE: Self-supervised Pre-training for Motion Forecasting with
Masked Autoencoders [7.133110402648305]
This study explores the application of self-supervised learning to the task of motion forecasting.
Forecast-MAE is an extension of the mask autoencoders framework that is specifically designed for self-supervised learning of the motion forecasting task.
arXiv Detail & Related papers (2023-08-19T02:27:51Z) - ExpPoint-MAE: Better interpretability and performance for self-supervised point cloud transformers [7.725095281624494]
We evaluate the effectiveness of Masked Autoencoding as a pretraining scheme, and explore Momentum Contrast as an alternative.
We observe that the transformer learns to attend to semantically meaningful regions, indicating that pretraining leads to a better understanding of the underlying geometry.
arXiv Detail & Related papers (2023-06-19T09:38:21Z) - Learning to Mask and Permute Visual Tokens for Vision Transformer
Pre-Training [59.923672191632065]
We propose a new self-supervised pre-training approach, named Masked and Permuted Vision Transformer (MaPeT)
MaPeT employs autoregressive and permuted predictions to capture intra-patch dependencies.
Our results demonstrate that MaPeT achieves competitive performance on ImageNet.
arXiv Detail & Related papers (2023-06-12T18:12:19Z) - Style-Hallucinated Dual Consistency Learning: A Unified Framework for
Visual Domain Generalization [113.03189252044773]
We propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle domain shift in various visual tasks.
Our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection.
arXiv Detail & Related papers (2022-12-18T11:42:51Z) - Spatial Entropy Regularization for Vision Transformers [71.44392961125807]
Vision Transformers (VTs) can contain a semantic segmentation structure which does not spontaneously emerge when training is supervised.
We propose a VT regularization method based on a spatial formulation of the information entropy.
We show that the proposed regularization approach is beneficial with different training scenarios, datasets, downstream tasks and VT architectures.
arXiv Detail & Related papers (2022-06-09T17:34:39Z) - Self-Supervised Models are Continual Learners [79.70541692930108]
We show that self-supervised loss functions can be seamlessly converted into distillation mechanisms for Continual Learning.
We devise a framework for Continual self-supervised visual representation Learning that significantly improves the quality of the learned representations.
arXiv Detail & Related papers (2021-12-08T10:39:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.