DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training
- URL: http://arxiv.org/abs/2504.17565v2
- Date: Fri, 25 Apr 2025 15:10:20 GMT
- Title: DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training
- Authors: Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yiping Peng, Yunjie Ji, Han Zhao, Xiangang Li,
- Abstract summary: Large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks.<n>We construct a large-scale, difficulty-graded reasoning dataset containing about 3.34 million unique queries of varying difficulty levels.<n>We significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2% on the AIME2024 mathematical reasoning benchmark.
- Score: 16.441081996257576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks, the academic community still lacks an in-depth understanding of base model training processes and data quality. To address this, we construct a large-scale, difficulty-graded reasoning dataset containing approximately 3.34 million unique queries of varying difficulty levels and about 40 million distilled responses generated by multiple models over several passes. Leveraging pass rate and Coefficient of Variation (CV), we precisely select the most valuable training data to enhance reasoning capability. Notably, we observe a training pattern shift, indicating that reasoning-focused training based on base models requires higher learning rates for effective training. Using this carefully selected data, we significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2\% on the AIME2024 mathematical reasoning benchmark. This result surpasses most current distilled models and closely approaches state-of-the-art performance. We provide detailed descriptions of our data processing, difficulty assessment, and training methodology, and have publicly released all datasets and methods to promote rapid progress in open-source long-reasoning LLMs. The dataset is available at: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M
Related papers
- OpenCodeReasoning: Advancing Data Distillation for Competitive Coding [61.15402517835137]
We build a supervised fine-tuning (SFT) dataset to achieve state-of-the-art coding capability results in models of various sizes.<n>Our models use only SFT to achieve 61.8% on LiveCodeBench and 24.6% on CodeContests, surpassing alternatives trained with reinforcement learning.
arXiv Detail & Related papers (2025-04-02T17:50:31Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.<n>LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.<n>Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding [9.112203072394648]
Power-law scaling indicates that large-scale training with uniform sampling is prohibitively slow.
Active learning methods aim to increase data efficiency by prioritizing learning on the most relevant examples.
arXiv Detail & Related papers (2023-12-08T19:26:13Z) - D4: Improving LLM Pretraining via Document De-Duplication and
Diversification [38.84592304799403]
We show that careful data selection via pre-trained model embeddings can speed up training.
We also show that repeating data intelligently consistently outperforms baseline training.
arXiv Detail & Related papers (2023-08-23T17:58:14Z) - Complementary Ensemble Learning [1.90365714903665]
We derive a technique to improve performance of state-of-the-art deep learning models.
Specifically, we train auxiliary models which are able to complement state-of-the-art model uncertainty.
arXiv Detail & Related papers (2021-11-09T03:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.