論文の概要: L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference
- arxiv url: http://arxiv.org/abs/2504.17584v1
- Date: Thu, 24 Apr 2025 14:14:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.402306
- Title: L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference
- Title(参考訳): L3: DIMM-PIM統合アーキテクチャと拡張性LLM推論のためのコーディネーション
- Authors: Qingyuan Liu, Liyan Chen, Yanning Yang, Haocheng Wang, Dong Du, Zhigang Mao, Naifeng Jing, Yubin Xia, Haibo Chen,
- Abstract要約: 大きな言語モデル(LLM)では、長いテキストシーケンスの処理がますます必要になるが、GPUメモリの制限により、メモリ容量と帯域幅のトレードオフが困難になる。
重要なメモリボトルネックは、マルチヘッドアテンションの復号フェーズにある。
本稿では,DIMM-PIMとGPUデバイスを統合したハードウェア・ソフトウェア共同設計システムであるL3を提案する。
- 参考スコア(独自算出の注目度): 6.886434948681708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) increasingly require processing long text sequences, but GPU memory limitations force difficult trade-offs between memory capacity and bandwidth. While HBM-based acceleration offers high bandwidth, its capacity remains constrained. Offloading data to host-side DIMMs improves capacity but introduces costly data swapping overhead. We identify that the critical memory bottleneck lies in the decoding phase of multi-head attention (MHA) exclusively, which demands substantial capacity for storing KV caches and high bandwidth for attention computation. Our key insight reveals this operation uniquely aligns with modern DIMM-based processing-in-memory (PIM) architectures, which offers scalability of both capacity and bandwidth. Based on this observation and insight, we propose L3, a hardware-software co-designed system integrating DIMM-PIM and GPU devices. L3 introduces three innovations: First, hardware redesigns resolve data layout mismatches and computational element mismatches in DIMM-PIM, enhancing LLM inference utilization. Second, communication optimization enables hiding the data transfer overhead with the computation. Third, an adaptive scheduler coordinates GPU-DIMM-PIM operations to maximize parallelism between devices. Evaluations using real-world traces show L3 achieves up to 6.1$\times$ speedup over state-of-the-art HBM-PIM solutions while significantly improving batch sizes.
- Abstract(参考訳): 大きな言語モデル(LLM)では、長いテキストシーケンスの処理がますます必要になるが、GPUメモリの制限により、メモリ容量と帯域幅のトレードオフが困難になる。
HBMベースのアクセラレーションは高い帯域幅を提供するが、その容量は制限されている。
ホスト側のDIMMにデータをオフロードすることで、キャパシティが向上するが、オーバヘッドにコストのかかるデータスワップが導入される。
重要なメモリボトルネックはマルチヘッドアテンション(MHA)の復号フェーズにのみ存在し、KVキャッシュの保存能力とアテンション計算のための高帯域幅を必要とする。
我々のキーとなる洞察は、この操作が、キャパシティと帯域幅のスケーラビリティを提供する最新のDIMMベースの処理インメモリ(PIM)アーキテクチャと一意に一致していることを明らかにする。
そこで本研究では,DIMM-PIMとGPUデバイスを統合したハードウェア・ソフトウェア共同設計システムであるL3を提案する。
まず、ハードウェアの再設計により、DIMM-PIMにおけるデータレイアウトミスマッチと計算要素ミスマッチが解決され、LLM推論の利用が向上する。
第二に、通信最適化により、計算によってデータ転送のオーバーヘッドを隠蔽することができる。
第3に、適応スケジューラは、GPU-DIMM-PIM操作をコーディネートし、デバイス間の並列性を最大化する。
実世界のトレースを用いた評価では、L3は最先端のHBM-PIMソリューションよりも最大6.1$\times$の高速化を実現し、バッチサイズを大幅に改善している。
関連論文リスト
- PAPI: Exploiting Dynamic Parallelism in Large Language Model Decoding with a Processing-In-Memory-Enabled Computing System [13.678531084541666]
PAPI は PIM 対応のヘテロジニアスアーキテクチャで,計算バウンドカーネルやメモリバウンドカーネルを適切なハードウェアユニットに動的にスケジューリングする。
PAPIは最先端の異種加速器と最先端のPIM専用加速器で1.8$times$と11.1$times$を達成している。
論文 参考訳(メタデータ) (2025-02-21T13:52:31Z) - LoL-PIM: Long-Context LLM Decoding with Scalable DRAM-PIM System [6.21613161960432]
大規模言語モデル(LLM)は数万のトークンのシーケンスを処理する。
Processing-in-Memory (PIM) は、計算をデータに移動させることでメモリ帯域幅を最大化する。
LoL-PIM はマルチノード PIM アーキテクチャであり、ハードウェアとソフトウェアの共同設計により長期のコンテキスト LLM を高速化する。
論文 参考訳(メタデータ) (2024-12-28T14:38:16Z) - Look Every Frame All at Once: Video-Ma$^2$mba for Efficient Long-form Video Understanding with Multi-Axis Gradient Checkpointing [52.050036778325094]
Video-Ma$2$mbaは、Mamba-2フレームワークにステートスペースモデル(SSM)を組み込んだ新しいアーキテクチャである。
本手法は,標準勾配チェックポイントに比べてメモリフットプリントを大幅に削減する。
時間的ダイナミクスの詳細なキャプチャーを維持することで、長いビデオ理解タスクにおける応答の精度と関連性を改善することができる。
論文 参考訳(メタデータ) (2024-11-29T04:12:13Z) - LiVOS: Light Video Object Segmentation with Gated Linear Matching [116.58237547253935]
LiVOSはリニアアテンションによるリニアマッチングを利用する軽量メモリネットワークである。
長くて高解像度のビデオでは、STMベースのメソッドと53%のGPUメモリで一致し、32Gの消費者向けGPU上で4096pの推論をサポートする。
論文 参考訳(メタデータ) (2024-11-05T05:36:17Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
論文 参考訳(メタデータ) (2024-08-21T16:10:41Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
論文 参考訳(メタデータ) (2024-07-22T14:37:58Z) - Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTEはLUT量子化LLM用のフレキシブルなルックアップテーブルエンジンである。
バッチサイズ32と量子化グループサイズ128では、FLUTEカーネルは既存のGEMMカーネルよりも2〜4倍高速である。
論文 参考訳(メタデータ) (2024-07-15T17:55:42Z) - Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
大規模言語モデル(LLM)は自然言語処理を変換し、機械が人間のようなテキストを生成し、意味のある会話を行うことを可能にする。
計算と記憶能力の発達はムーアの法則の廃止によってさらに悪化している。
コンピュート・イン・メモリ(CIM)技術は、メモリ内でアナログ計算を直接実行することにより、AI推論を加速するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-12T16:57:58Z) - PIM-Opt: Demystifying Distributed Optimization Algorithms on a Real-World Processing-In-Memory System [21.09681871279162]
大規模データセットに対するモダン機械学習(ML)トレーニングは、時間を要する作業量である。
最適化アルゴリズムであるGradient Descent (SGD) は、その効率性、単純さ、一般化性能に頼っている。
プロセッサ中心のアーキテクチャは、MLトレーニングワークロードの実行中に低パフォーマンスと高エネルギー消費に悩まされる。
Processing-In-Memory(PIM)は、データ移動のボトルネックを軽減するための有望なソリューションである。
論文 参考訳(メタデータ) (2024-04-10T17:00:04Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - PIM-DRAM:Accelerating Machine Learning Workloads using Processing in
Memory based on DRAM Technology [2.6168147530506958]
MLワークロードにおける行列ベクトル演算を高速化する処理インメモリ(PIM)プリミティブを提案する。
提案したアーキテクチャ,マッピング,データフローは,GPUよりも最大で23倍,6.5倍のメリットが得られることを示す。
論文 参考訳(メタデータ) (2021-05-08T16:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。