Selectively Blind Quantum Computation
- URL: http://arxiv.org/abs/2504.17612v1
- Date: Thu, 24 Apr 2025 14:36:00 GMT
- Title: Selectively Blind Quantum Computation
- Authors: Abbas Poshtvan, Oleksandra Lapiha, Mina Doosti, Dominik Leichtle, Luka Music, Elham Kashefi,
- Abstract summary: We introduce Selectively Blind Quantum Computing (SBQC), a novel functionality that allows the client to hide one among a known set of possible computations.<n>This approach reduces qubit communication drastically and demonstrates the trade-off between information leaked to the server and communication cost.
- Score: 14.216196859415081
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Known protocols for secure delegation of quantum computations from a client to a server in an information theoretic setting require quantum communication. In this work, we investigate methods to reduce communication overhead. First, we establish an impossibility result by proving that server-side local processes cannot decrease quantum communication requirements of secure delegation protocols. We develop no-go results that prohibit such processes within an information theoretic framework. Second, we present a possibility result by introducing Selectively Blind Quantum Computing (SBQC), a novel functionality that allows the client to hide one among a known set of possible computations. We characterize how differences between computations in the protected set influence the number of qubits sent during our SBQC implementation, yielding a communication-optimal protocol. This approach reduces qubit communication drastically and demonstrates the trade-off between information leaked to the server and communication cost.
Related papers
- Verifiable End-to-End Delegated Variational Quantum Algorithms [0.0]
Variational quantum algorithms (VQAs) have emerged as promising candidates for solving complex optimization and machine learning tasks on near-term quantum hardware.
executing quantum operations remains challenging for small-scale users because of several hardware constraints.
We introduce a framework for delegated variational quantum algorithms, where a client with limited quantum capabilities delegates the execution of a VQA to a more powerful quantum server.
arXiv Detail & Related papers (2025-04-21T19:36:42Z) - On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.
Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.
Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
arXiv Detail & Related papers (2024-10-31T16:54:41Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Improving the performance of quantum cryptography by using the
encryption of the error correction data [0.0]
We introduce the idea of encrypting classical communication related to error-correction in order to decrease the amount of information available to the eavesdropper.
We analyze the applicability of the method in the context of additional assumptions concerning the eavesdropper's quantum memory coherence time.
arXiv Detail & Related papers (2023-06-21T15:42:54Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Unifying Quantum Verification and Error-Detection: Theory and Tools for Optimisations [0.5825410941577593]
Cloud-based quantum computing has become vital to provide strong guarantees that computations delegated by clients to quantum service providers have been executed faithfully.
Current protocols lack at least one of the following three ingredients: composability, noise-robustness and modularity.
This paper lays out the fundamental structure of SDQC protocols, namely mixing two components: the Cryptography which the client would like the server to perform and tests that are designed to detect a server's malicious behaviour.
Changing the types of tests and how they are mixed with the client's computation automatically yields new SDQC protocols with different security and noise-
arXiv Detail & Related papers (2022-06-01T17:03:07Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.