Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings
- URL: http://arxiv.org/abs/2501.08219v1
- Date: Tue, 14 Jan 2025 16:02:33 GMT
- Title: Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings
- Authors: Paul Joe Maliakel, Shashikant Ilager, Ivona Brandic,
- Abstract summary: Large language models (LLMs) have shown significant improvements in many natural language processing (NLP) tasks.<n>LLMs are resource-intensive, requiring extensive computational resources both during training and inference.<n>As their adoption accelerates, the sustainability of LLMs has become a critical issue.
- Score: 1.5749416770494706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown significant improvements in many natural language processing (NLP) tasks, accelerating their rapid adoption across many industries. These models are resource-intensive, requiring extensive computational resources both during training and inference, leading to increased energy consumption and negative environmental impact. As their adoption accelerates, the sustainability of LLMs has become a critical issue, necessitating strategies to optimize their runtime efficiency without compromising performance. Hence, it is imperative to identify the parameters that significantly influence the performance and energy efficiency of LLMs. To that end, in this work, we investigate the effect of important parameters on the performance and energy efficiency of LLMs during inference and examine their trade-offs. First, we analyze how different types of models with varying numbers of parameters and architectures perform on tasks like text generation, question answering, and summarization by benchmarking LLMs such as Falcon-7B, Mistral-7B-v0.1, T5-3B, GPT-2, GPT-J-6B, and GPT-Neo-2.7B. Second, we study input and output sequence characteristics such as sequence length concerning energy consumption, performance, and throughput. Finally, we explore the impact of hardware-based power-saving techniques, i.e., Dynamic Voltage Frequency Scaling (DVFS), on the models' latency and energy efficiency. Our extensive benchmarking and statistical analysis reveal many interesting findings, uncovering how specific optimizations can reduce energy consumption while maintaining throughput and accuracy. This study provides actionable insights for researchers and practitioners to design energy-efficient LLM inference systems.
Related papers
- Energy Considerations of Large Language Model Inference and Efficiency Optimizations [28.55549828393871]
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise.
We systematically analyze the energy implications of common inference efficiency optimizations across diverse NLP and AI workloads.
Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines.
arXiv Detail & Related papers (2025-04-24T15:45:05Z) - Sustainable LLM Inference for Edge AI: Evaluating Quantized LLMs for Energy Efficiency, Output Accuracy, and Inference Latency [6.306413686006502]
We conduct a comprehensive analysis of 28 quantized Large Language Models (LLMs) from the Ollama library.
We evaluate energy efficiency, inference performance, and output accuracy across multiple quantization levels and task types.
Our findings reveal the trade-offs between energy efficiency, inference speed, and accuracy in different quantization settings.
arXiv Detail & Related papers (2025-04-04T11:29:30Z) - Energy-Aware LLMs: A step towards sustainable AI for downstream applications [0.9012198585960441]
Advanced Large Language Models (LLMs) have revolutionized various fields, including communication networks.
LLMs typically require huge computational resources, resulting in terribly high energy consumption.
This research study proposes an end-to-end pipeline that investigates the trade-off between energy efficiency and model performance.
arXiv Detail & Related papers (2025-03-22T14:28:29Z) - An Inquiry into Datacenter TCO for LLM Inference with FP8 [7.910301381209274]
We analyze the computational characteristics and constraints of large language models (LLMs) inference from a TCO perspective.
We present a generalizable framework that enables CSPs to compare and select AI accelerators according to diverse operational requirements.
arXiv Detail & Related papers (2025-02-03T05:26:22Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Towards Resilient and Efficient LLMs: A Comparative Study of Efficiency, Performance, and Adversarial Robustness [0.0]
We investigate the trade-off between efficiency, performance, and adversarial robustness of Large Language Models (LLMs)
We conduct experiments on three prominent models with varying levels of complexity and efficiency -- Transformer++, Gated Linear Attention (GLA) Transformer, and MatMul-Free LM.
Our results show that while the GLA Transformer and MatMul-Free LM achieve slightly lower accuracy on GLUE tasks, they demonstrate higher efficiency and either superior or comparative robustness on AdvGLUE tasks.
arXiv Detail & Related papers (2024-08-08T16:54:40Z) - DynamoLLM: Designing LLM Inference Clusters for Performance and Energy Efficiency [7.073435885680335]
We propose DynamoLLM, the first energy-management framework for generative large language models.
At a service-level, DynamoLLM conserves 53% energy and 38% operational carbon emissions, and reduces 61% cost to the customer.
arXiv Detail & Related papers (2024-08-01T17:40:45Z) - Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference [2.553456266022126]
Machine learning (ML) has seen tremendous advancements, but its environmental footprint remains a concern.
Acknowledging the growing environmental impact of ML this paper investigates Green ML.
arXiv Detail & Related papers (2024-06-20T13:59:34Z) - Hybrid Heterogeneous Clusters Can Lower the Energy Consumption of LLM Inference Workloads [0.2389598109913753]
Training and using Large Language Models (LLMs) require large amounts of energy.
This paper addresses the challenge of reducing energy consumption in data centers running LLMs.
We propose a hybrid data center model that uses a cost-based scheduling framework to dynamically allocate tasks across hardware accelerators.
arXiv Detail & Related papers (2024-04-25T11:24:08Z) - What Makes Quantization for Large Language Models Hard? An Empirical
Study from the Lens of Perturbation [55.153595212571375]
Quantization is a technique for improving the memory and computational efficiency of large language models (LLMs)
We propose a new perspective on quantization, viewing it as perturbations added to the weights and activations of LLMs.
We conduct experiments with various artificial perturbations to explore their impact on LLM performance.
arXiv Detail & Related papers (2024-03-11T03:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.