Disaggregated Deep Learning via In-Physics Computing at Radio Frequency
- URL: http://arxiv.org/abs/2504.17752v1
- Date: Thu, 24 Apr 2025 17:10:18 GMT
- Title: Disaggregated Deep Learning via In-Physics Computing at Radio Frequency
- Authors: Zhihui Gao, Sri Krishna Vadlamani, Kfir Sulimany, Dirk Englund, Tingjun Chen,
- Abstract summary: WISE is a novel computing architecture for wireless edge networks designed to overcome energy constraints in deep learning inference.<n>We demonstrate WISE 95.7% image classification accuracy with ultra-low operation power of 6.0 fJ/MAC per client, corresponding to a computation efficiency of 165.8 TOPS/W.
- Score: 1.0953436973292041
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern edge devices, such as cameras, drones, and Internet-of-Things nodes, rely on deep learning to enable a wide range of intelligent applications, including object recognition, environment perception, and autonomous navigation. However, deploying deep learning models directly on the often resource-constrained edge devices demands significant memory footprints and computational power for real-time inference using traditional digital computing architectures. In this paper, we present WISE, a novel computing architecture for wireless edge networks designed to overcome energy constraints in deep learning inference. WISE achieves this goal through two key innovations: disaggregated model access via wireless broadcasting and in-physics computation of general complex-valued matrix-vector multiplications directly at radio frequency. Using a software-defined radio platform with wirelessly broadcast model weights over the air, we demonstrate that WISE achieves 95.7% image classification accuracy with ultra-low operation power of 6.0 fJ/MAC per client, corresponding to a computation efficiency of 165.8 TOPS/W. This approach enables energy-efficient deep learning inference on wirelessly connected edge devices, achieving more than two orders of magnitude improvement in efficiency compared to traditional digital computing.
Related papers
- DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users [52.9870460238443]
We propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array.<n>Our simulation results show that the proposed method can support data rates very close to the best possible values.
arXiv Detail & Related papers (2025-02-03T11:50:43Z) - Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning [68.63990729719369]
The wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications.
This paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals.
We develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters.
arXiv Detail & Related papers (2024-10-23T15:36:43Z) - Neural Network Methods for Radiation Detectors and Imaging [1.6395318070400589]
Recent advances in machine learning and especially deep neural networks (DNNs) allow for new optimization and performance-enhancement schemes for radiation detectors and imaging hardware.
We give an overview of data generation at photon sources, deep learning-based methods for image processing tasks, and hardware solutions for deep learning acceleration.
arXiv Detail & Related papers (2023-11-09T20:21:51Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - A Machine Learning Framework for Distributed Functional Compression over
Wireless Channels in IoT [13.385373310554327]
IoT devices generate enormous data and state-of-the-art machine learning techniques together will revolutionize cyber-physical systems.
Traditional cloud-based methods that focus on transferring data to a central location either for training or inference place enormous strain on network resources.
We develop, to the best of our knowledge, the first machine learning framework for distributed functional compression over both the Gaussian Multiple Access Channel (GMAC) and AWGN channels.
arXiv Detail & Related papers (2022-01-24T06:38:39Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Monolithic Silicon Photonic Architecture for Training Deep Neural
Networks with Direct Feedback Alignment [0.6501025489527172]
We propose on-chip training of neural networks enabled by a CMOS-compatible silicon photonic architecture.
Our scheme employs the direct feedback alignment training algorithm, which trains neural networks using error feedback rather than error backpropagation.
We experimentally demonstrate training a deep neural network with the MNIST dataset using on-chip MAC operation results.
arXiv Detail & Related papers (2021-11-12T18:31:51Z) - Broadcasted Residual Learning for Efficient Keyword Spotting [7.335747584353902]
We present a broadcasted residual learning method to achieve high accuracy with small model size and computational load.
We also propose a novel network architecture, Broadcasting-residual network (BC-ResNet), based on broadcasted residual learning.
BC-ResNets achieve state-of-the-art 98.0% and 98.7% top-1 accuracy on Google speech command datasets v1 and v2, respectively.
arXiv Detail & Related papers (2021-06-08T06:55:39Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
Convolutional neural networks (CNNs) have achieved astonishing advances over the past decade.
CNNs are capable of learning robust representations of the data directly from the RGB pixels.
Deep learning methods capable of learning directly from the compressed domain have been gaining attention in recent years.
arXiv Detail & Related papers (2020-12-26T15:00:10Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
Edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge.
This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model.
Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
arXiv Detail & Related papers (2020-07-21T07:02:07Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.