Conversational Assistants to support Heart Failure Patients: comparing a Neurosymbolic Architecture with ChatGPT
- URL: http://arxiv.org/abs/2504.17753v1
- Date: Thu, 24 Apr 2025 17:16:24 GMT
- Title: Conversational Assistants to support Heart Failure Patients: comparing a Neurosymbolic Architecture with ChatGPT
- Authors: Anuja Tayal, Devika Salunke, Barbara Di Eugenio, Paula Allen-Meares, Eulalia Puig Abril, Olga Garcia, Carolyn Dickens, Andrew Boyd,
- Abstract summary: We compare two versions of a conversational assistant that allows heart failure patients to ask about salt content in food.<n>One version was developed in-house with a neurosymbolic architecture, and one is based on ChatGPT.<n>The evaluation shows that the in-house system is more accurate, completes more tasks and is less verbose than the one based on ChatGPT.
- Score: 0.7334873346655889
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational assistants are becoming more and more popular, including in healthcare, partly because of the availability and capabilities of Large Language Models. There is a need for controlled, probing evaluations with real stakeholders which can highlight advantages and disadvantages of more traditional architectures and those based on generative AI. We present a within-group user study to compare two versions of a conversational assistant that allows heart failure patients to ask about salt content in food. One version of the system was developed in-house with a neurosymbolic architecture, and one is based on ChatGPT. The evaluation shows that the in-house system is more accurate, completes more tasks and is less verbose than the one based on ChatGPT; on the other hand, the one based on ChatGPT makes fewer speech errors and requires fewer clarifications to complete the task. Patients show no preference for one over the other.
Related papers
- A General-purpose AI Avatar in Healthcare [1.5081825869395544]
This paper focuses on the role of chatbots in healthcare and explores the use of avatars to make AI interactions more appealing to patients.
A framework of a general-purpose AI avatar application is demonstrated by using a three-category prompt dictionary and prompt improvement mechanism.
A two-phase approach is suggested to fine-tune a general-purpose AI language model and create different AI avatars to discuss medical issues with users.
arXiv Detail & Related papers (2024-01-10T03:44:15Z) - Performance of ChatGPT on USMLE: Unlocking the Potential of Large
Language Models for AI-Assisted Medical Education [0.0]
This study determined how reliable ChatGPT can be for answering complex medical and clinical questions.
The paper evaluated the obtained results using a 2-way ANOVA and posthoc analysis.
ChatGPT-generated answers were found to be more context-oriented than regular Google search results.
arXiv Detail & Related papers (2023-06-30T19:53:23Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
This paper systematically inspects ChatGPT's performance in two discourse analysis tasks: topic segmentation and discourse parsing.
ChatGPT demonstrates proficiency in identifying topic structures in general-domain conversations yet struggles considerably in specific-domain conversations.
Our deeper investigation indicates that ChatGPT can give more reasonable topic structures than human annotations but only linearly parses the hierarchical rhetorical structures.
arXiv Detail & Related papers (2023-05-15T07:14:41Z) - ChatLLM Network: More brains, More intelligence [42.65167827451101]
We propose ChatLLM network that allows multiple dialogue-based language models to interact, provide feedback, and think together.
We show that our network attains significant improvements in problem-solving, leading to observable progress amongst each member.
arXiv Detail & Related papers (2023-04-24T08:29:14Z) - A Preliminary Evaluation of ChatGPT for Zero-shot Dialogue Understanding [55.37338324658501]
Zero-shot dialogue understanding aims to enable dialogue to track the user's needs without any training data.
In this work, we investigate the understanding ability of ChatGPT for zero-shot dialogue understanding tasks.
arXiv Detail & Related papers (2023-04-09T15:28:36Z) - ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about [15.19126287569545]
This research examines the responses generated by ChatGPT from different Conversational QA corpora.
The study employed BERT similarity scores to compare these responses with correct answers and obtain Natural Language Inference(NLI) labels.
The study identified instances where ChatGPT provided incorrect answers to questions, providing insights into areas where the model may be prone to error.
arXiv Detail & Related papers (2023-04-06T18:42:47Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
This study provides a comprehensive and contemporary assessment of the most recent techniques in ChatGPT detection.
We have curated a benchmark dataset consisting of prompts from ChatGPT and humans, including diverse questions from medical, open Q&A, and finance domains.
Our evaluation results demonstrate that none of the existing methods can effectively detect ChatGPT-generated content.
arXiv Detail & Related papers (2023-04-04T03:04:28Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
ChatGPT has attracted great attention, as it can generate fluent and high-quality responses to human inquiries.
We evaluate ChatGPT's understanding ability by evaluating it on the most popular GLUE benchmark, and comparing it with 4 representative fine-tuned BERT-style models.
We find that: 1) ChatGPT falls short in handling paraphrase and similarity tasks; 2) ChatGPT outperforms all BERT models on inference tasks by a large margin; 3) ChatGPT achieves comparable performance compared with BERT on sentiment analysis and question answering tasks.
arXiv Detail & Related papers (2023-02-19T12:29:33Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
Large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot.
Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community.
It is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot.
arXiv Detail & Related papers (2023-02-08T09:44:51Z) - A Preliminary Study of a Two-Stage Paradigm for Preserving Speaker
Identity in Dysarthric Voice Conversion [50.040466658605524]
We propose a new paradigm for maintaining speaker identity in dysarthric voice conversion (DVC)
The poor quality of dysarthric speech can be greatly improved by statistical VC.
But as the normal speech utterances of a dysarthria patient are nearly impossible to collect, previous work failed to recover the individuality of the patient.
arXiv Detail & Related papers (2021-06-02T18:41:03Z) - Automatic Speaker Independent Dysarthric Speech Intelligibility
Assessment System [28.01689694536572]
Dysarthria is a condition which hampers the ability of an individual to control the muscles that play a major role in speech delivery.
The loss of fine control over muscles that assist the movement of lips, vocal chords, tongue and diaphragm results in abnormal speech delivery.
One can assess the level of dysarthria by analyzing the intelligibility of speech spoken by an individual.
arXiv Detail & Related papers (2021-03-10T16:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.