論文の概要: DCT-Shield: A Robust Frequency Domain Defense against Malicious Image Editing
- arxiv url: http://arxiv.org/abs/2504.17894v1
- Date: Thu, 24 Apr 2025 19:14:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.557765
- Title: DCT-Shield: A Robust Frequency Domain Defense against Malicious Image Editing
- Title(参考訳): DCT-Shield:悪質な画像編集に対するロバストな周波数ドメイン防御
- Authors: Aniruddha Bala, Rohit Chowdhury, Rohan Jaiswal, Siddharth Roheda,
- Abstract要約: 最近のディフェンスは、拡散ベースの編集モデルの機能を損なうために、ピクセル空間に限られたノイズを加えることで画像を保護する。
本稿では,周波数領域に直接対向摂動を導入する新しい最適化手法を提案する。
JPEGパイプラインを利用して,悪意のある画像編集を効果的に防止する逆画像を生成する。
- 参考スコア(独自算出の注目度): 1.7624347338410742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in diffusion models have enabled effortless image editing via text prompts, raising concerns about image security. Attackers with access to user images can exploit these tools for malicious edits. Recent defenses attempt to protect images by adding a limited noise in the pixel space to disrupt the functioning of diffusion-based editing models. However, the adversarial noise added by previous methods is easily noticeable to the human eye. Moreover, most of these methods are not robust to purification techniques like JPEG compression under a feasible pixel budget. We propose a novel optimization approach that introduces adversarial perturbations directly in the frequency domain by modifying the Discrete Cosine Transform (DCT) coefficients of the input image. By leveraging the JPEG pipeline, our method generates adversarial images that effectively prevent malicious image editing. Extensive experiments across a variety of tasks and datasets demonstrate that our approach introduces fewer visual artifacts while maintaining similar levels of edit protection and robustness to noise purification techniques.
- Abstract(参考訳): 拡散モデルの進歩により、テキストプロンプトによる努力の無い画像編集が可能となり、画像セキュリティに対する懸念が高まった。
ユーザーイメージにアクセスするアタッカーは、悪意のある編集のためにこれらのツールを利用することができる。
最近のディフェンスは、拡散ベースの編集モデルの機能を損なうために、ピクセル空間に限られたノイズを加えることで画像を保護する。
しかし、従来の手法で付加された対向ノイズは、人間の目には容易に気づく。
さらに、これらの手法のほとんどは、実現可能なピクセル予算の下でJPEG圧縮のような浄化技術に対して堅牢ではない。
本稿では,入力画像の離散コサイン変換(DCT)係数を変更することで,周波数領域の対向摂動を直接導入する新しい最適化手法を提案する。
JPEGパイプラインを利用して,悪意のある画像編集を効果的に防止する逆画像を生成する。
様々なタスクやデータセットにわたる大規模な実験により、我々の手法は、同様のレベルの編集保護とノイズ浄化技術に対する堅牢性を維持しながら、視覚的アーティファクトを少なくすることを示した。
関連論文リスト
- Anti-Reference: Universal and Immediate Defense Against Reference-Based Generation [24.381813317728195]
反参照は、参照ベースの生成技術によって引き起こされる脅威から画像を保護する新しい方法である。
本研究では,微調整に基づくカスタマイズ手法に対する共同攻撃を可能にする一元的損失関数を提案する。
提案手法は特定の転送攻撃能力を示し,グレーボックスモデルといくつかの商用APIの両方に効果的に挑戦する。
論文 参考訳(メタデータ) (2024-12-08T16:04:45Z) - DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuardは、拡散ベースの画像編集モデルによる不正な編集に対する堅牢で効果的な防御方法である。
拡散過程の初期段階をターゲットとした対向雑音を発生させる新しい目的を提案する。
また,テスト期間中の各種マスクに対するロバスト性を高めるマスク強化手法も導入した。
論文 参考訳(メタデータ) (2024-10-08T05:19:19Z) - Pixel Is Not a Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
従来の研究は、知覚不能な摂動を加えることで、画像の拡散に基づく編集を防ごうとしてきた。
本研究は,UNETの脆弱性を利用した新たな攻撃フレームワークであるAtkPDMと,敵画像の自然性を高めるための潜在最適化戦略を提案する。
論文 参考訳(メタデータ) (2024-08-21T17:56:34Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
テキストベースの一般的な編集フレームワーク – 編集フレンドリーなDDPM-noiseインバージョンアプローチ – に注目します。
高速サンプリング法への適用を解析し、その失敗を視覚的アーティファクトの出現と編集強度の不足という2つのクラスに分類する。
そこで我々は,新しいアーティファクトを導入することなく,効率よく編集の規模を拡大する疑似誘導手法を提案する。
論文 参考訳(メタデータ) (2024-08-01T17:27:28Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARKは、コントラスト学習による堅牢性を高める、第一級の透かし技術である。
本評価の結果,JIGMARKは既存の透かし法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:31:41Z) - MetaCloak: Preventing Unauthorized Subject-driven Text-to-image Diffusion-based Synthesis via Meta-learning [59.988458964353754]
テキストから画像への拡散モデルにより、スキャンされた参照写真からパーソナライズされた画像をシームレスに生成できる。
既存のアプローチは、悪意のある使用から"学習不能"なイメージをレンダリングするために、知覚不可能な方法でユーザーイメージを摂動させる。
メタ学習フレームワークを用いて,バイレベル中毒の問題を解決するメタクラックを提案する。
論文 参考訳(メタデータ) (2023-11-22T03:31:31Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
拡散ベースの画像生成モデルは、アーティストのスタイルを模倣するアートイメージを作成したり、偽のコンテンツのためにオリジナルの画像を悪意を持って編集することができる。
知覚不能な摂動を追加することによって、元のイメージをそのような不正なデータ使用から保護する試みがいくつかなされている。
本研究では, IMPRESS という浄化摂動プラットフォームを導入し, 非受容性摂動の有効性を保護策として評価する。
論文 参考訳(メタデータ) (2023-10-30T03:33:41Z) - JPEG Compressed Images Can Bypass Protections Against AI Editing [48.340067730457584]
悪意ある編集から画像を保護する手段として、知覚不能な摂動が提案されている。
上記の摂動はJPEG圧縮に対して堅牢ではないことがわかった。
論文 参考訳(メタデータ) (2023-04-05T05:30:09Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - TAFIM: Targeted Adversarial Attacks against Facial Image Manipulations [0.0]
顔画像操作手法は、個人のプライバシーに影響を与えるか、偽情報を広めることによって、懸念を引き起こす可能性がある。
本研究は,顔の操作がそもそも起こらないよう,前向きな防御法を提案する。
原画像に埋め込まれた画像固有の摂動を生成する新しいデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T19:00:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。