論文の概要: Anti-Reference: Universal and Immediate Defense Against Reference-Based Generation
- arxiv url: http://arxiv.org/abs/2412.05980v1
- Date: Sun, 08 Dec 2024 16:04:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:54:59.986881
- Title: Anti-Reference: Universal and Immediate Defense Against Reference-Based Generation
- Title(参考訳): 反参照:リファレンス・ジェネレーションに対する普遍的かつ即時防衛
- Authors: Yiren Song, Shengtao Lou, Xiaokang Liu, Hai Ci, Pei Yang, Jiaming Liu, Mike Zheng Shou,
- Abstract要約: 反参照は、参照ベースの生成技術によって引き起こされる脅威から画像を保護する新しい方法である。
本研究では,微調整に基づくカスタマイズ手法に対する共同攻撃を可能にする一元的損失関数を提案する。
提案手法は特定の転送攻撃能力を示し,グレーボックスモデルといくつかの商用APIの両方に効果的に挑戦する。
- 参考スコア(独自算出の注目度): 24.381813317728195
- License:
- Abstract: Diffusion models have revolutionized generative modeling with their exceptional ability to produce high-fidelity images. However, misuse of such potent tools can lead to the creation of fake news or disturbing content targeting individuals, resulting in significant social harm. In this paper, we introduce Anti-Reference, a novel method that protects images from the threats posed by reference-based generation techniques by adding imperceptible adversarial noise to the images. We propose a unified loss function that enables joint attacks on fine-tuning-based customization methods, non-fine-tuning customization methods, and human-centric driving methods. Based on this loss, we train a Adversarial Noise Encoder to predict the noise or directly optimize the noise using the PGD method. Our method shows certain transfer attack capabilities, effectively challenging both gray-box models and some commercial APIs. Extensive experiments validate the performance of Anti-Reference, establishing a new benchmark in image security.
- Abstract(参考訳): 拡散モデルは、高忠実度画像を生成する素晴らしい能力で生成モデルに革命をもたらした。
しかし、そのような強力なツールの誤用は、偽ニュースの作成や個人をターゲットとしたコンテンツの乱用につながる可能性があり、社会的に重大な害をもたらす。
本稿では,画像に知覚不可能な逆方向ノイズを加えることで,参照ベース生成手法による脅威から画像を保護する新しい手法である反参照を導入する。
本研究では,微調整に基づくカスタマイズ法,非微調整によるカスタマイズ法,人中心駆動法に対する共同攻撃を可能にする統一的損失関数を提案する。
この損失に基づいて、逆雑音エンコーダを訓練してノイズを予測したり、PGD法を用いて直接ノイズを最適化する。
提案手法は特定の転送攻撃能力を示し,グレーボックスモデルといくつかの商用APIの両方に効果的に挑戦する。
大規模な実験により、反参照のパフォーマンスが検証され、画像セキュリティの新たなベンチマークが確立された。
関連論文リスト
- DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuardは、拡散ベースの画像編集モデルによる不正な編集に対する堅牢で効果的な防御方法である。
拡散過程の初期段階をターゲットとした対向雑音を発生させる新しい目的を提案する。
また,テスト期間中の各種マスクに対するロバスト性を高めるマスク強化手法も導入した。
論文 参考訳(メタデータ) (2024-10-08T05:19:19Z) - High-Frequency Anti-DreamBooth: Robust Defense against Personalized Image Synthesis [12.555117983678624]
本稿では, 画像の高周波領域に強い摂動を付加し, 対向的浄化をより堅牢にする新たな対向的攻撃法を提案する。
実験の結果, 敵画像は, 敵画像の浄化後もノイズを保ち, 悪意のある画像生成を妨げていることがわかった。
論文 参考訳(メタデータ) (2024-09-12T15:58:28Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations [25.929492841042666]
本稿では,トランスファー可能な対象対向例を生成するための新しい手法を提案する。
画像の高周波成分の摂動にディープニューラルネットワークの脆弱性を利用する。
提案手法は最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-10-31T04:54:55Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
拡散ベースの画像生成モデルは、アーティストのスタイルを模倣するアートイメージを作成したり、偽のコンテンツのためにオリジナルの画像を悪意を持って編集することができる。
知覚不能な摂動を追加することによって、元のイメージをそのような不正なデータ使用から保護する試みがいくつかなされている。
本研究では, IMPRESS という浄化摂動プラットフォームを導入し, 非受容性摂動の有効性を保護策として評価する。
論文 参考訳(メタデータ) (2023-10-30T03:33:41Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
本研究では,不正な利用から画像を保護するために,Unlearnable Diffusion Perturbationを提案する。
この成果は、AI生成コンテンツに対するプライバシーと著作権の保護に寄与するため、現実世界のシナリオにおいて重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-02T20:19:19Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。