Predicting Dairy Calf Body Weight from Depth Images Using Deep Learning (YOLOv8) and Threshold Segmentation with Cross-Validation and Longitudinal Analysis
- URL: http://arxiv.org/abs/2504.17943v1
- Date: Thu, 24 Apr 2025 21:08:31 GMT
- Title: Predicting Dairy Calf Body Weight from Depth Images Using Deep Learning (YOLOv8) and Threshold Segmentation with Cross-Validation and Longitudinal Analysis
- Authors: Mingsi Liao, Gota Morota, Ye Bi, Rebecca R. Cockrum,
- Abstract summary: Monitoring calf body weight (BW) before weaning is essential for assessing growth, feed efficiency, health, and weaning readiness.<n>Few studies have explored non-contact measurements taken at early time points for predicting later BW.<n>This study developed deep learning-based segmentation models for extracting calf body metrics.
- Score: 0.764971671709743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring calf body weight (BW) before weaning is essential for assessing growth, feed efficiency, health, and weaning readiness. However, labor, time, and facility constraints limit BW collection. Additionally, Holstein calf coat patterns complicate image-based BW estimation, and few studies have explored non-contact measurements taken at early time points for predicting later BW. The objectives of this study were to (1) develop deep learning-based segmentation models for extracting calf body metrics, (2) compare deep learning segmentation with threshold-based methods, and (3) evaluate BW prediction using single-time-point cross-validation with linear regression (LR) and extreme gradient boosting (XGBoost) and multiple-time-point cross-validation with LR, XGBoost, and a linear mixed model (LMM). Depth images from Holstein (n = 63) and Jersey (n = 5) pre-weaning calves were collected, with 20 Holstein calves being weighed manually. Results showed that You Only Look Once version 8 (YOLOv8) deep learning segmentation (intersection over union = 0.98) outperformed threshold-based methods (0.89). In single-time-point cross-validation, XGBoost achieved the best BW prediction (R^2 = 0.91, mean absolute percentage error (MAPE) = 4.37%), while LMM provided the most accurate longitudinal BW prediction (R^2 = 0.99, MAPE = 2.39%). These findings highlight the potential of deep learning for automated BW prediction, enhancing farm management.
Related papers
- Scaling Test-Time Compute Without Verification or RL is Suboptimal [70.28430200655919]
We show that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget.<n>We corroborate our theory empirically on both didactic and math reasoning problems with 3/8B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
arXiv Detail & Related papers (2025-02-17T18:43:24Z) - Supervised Contrastive Learning based Dual-Mixer Model for Remaining
Useful Life Prediction [3.081898819471624]
The Remaining Useful Life (RUL) prediction aims at providing an accurate estimate of the remaining time from the current predicting moment to the complete failure of the device.
To overcome the shortcomings of rigid combination for temporal and spatial features in most existing RUL prediction approaches, a spatial-temporal homogeneous feature extractor, named Dual-Mixer model, is proposed.
The effectiveness of the proposed method is validated through comparisons with other latest research works on the C-MAPSS dataset.
arXiv Detail & Related papers (2024-01-29T14:38:44Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Prawn Morphometrics and Weight Estimation from Images using Deep
Learning for Landmark Localization [2.778518997767646]
We developed a novel approach to automate weight estimation and morphometric analysis using the black tiger prawn (Penaeus monodon) as a model crustacean.
For morphometric analyses, we utilized the detected landmarks to derive five important prawn traits.
Our experimental results demonstrate that the novel DL approach outperforms existing DL methods in terms of accuracy, robustness, and efficiency.
arXiv Detail & Related papers (2023-07-15T07:05:06Z) - Depth video data-enabled predictions of longitudinal dairy cow body
weight using thresholding and Mask R-CNN algorithms [3.6809995018369936]
The aim of this study was to predict cow body weight from repeatedly measured video data.
Three approaches were investigated, including single thresholding, adaptive thresholding, and Mask R-CNN.
Our results suggest that deep learning-based segmentation improves the prediction performance of cow body weight from longitudinal depth video data.
arXiv Detail & Related papers (2023-07-03T22:27:37Z) - Uncertainty-Aware Semi-Supervised Learning for Prostate MRI Zonal
Segmentation [0.9176056742068814]
We propose a novel semi-supervised learning (SSL) approach that requires only a relatively small number of annotations.
Our method uses a pseudo-labeling technique that employs recent deep learning uncertainty estimation models.
Our proposed model outperformed the semi-supervised model in experiments with the ProstateX dataset and an external test set.
arXiv Detail & Related papers (2023-05-10T08:50:04Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
We develop a novel model-based approach to reinforcement learning (MBRL)
It relaxes the assumptions on the target transition model to belong to a generic family of mixture models.
It can achieve up-to 50 percent reduction in wall clock time in some continuous control environments.
arXiv Detail & Related papers (2022-06-02T17:27:49Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Semi-supervised Contrastive Learning with Similarity Co-calibration [72.38187308270135]
We propose a novel training strategy, termed as Semi-supervised Contrastive Learning (SsCL)
SsCL combines the well-known contrastive loss in self-supervised learning with the cross entropy loss in semi-supervised learning.
We show that SsCL produces more discriminative representation and is beneficial to few shot learning.
arXiv Detail & Related papers (2021-05-16T09:13:56Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.