Quantum Fisher-Yates shuffle: Unifying methods for generating uniform superpositions of permutations
- URL: http://arxiv.org/abs/2504.17965v1
- Date: Thu, 24 Apr 2025 22:24:39 GMT
- Title: Quantum Fisher-Yates shuffle: Unifying methods for generating uniform superpositions of permutations
- Authors: Lennart Binkowski, Marvin Schwiering,
- Abstract summary: Uniform superpositions over permutations play a central role in quantum error correction, cryptography, and optimisation.<n>We introduce a simple yet powerful quantisation of the classical Fisher-Yates shuffle, yielding a suite of efficient quantum algorithms.<n>Our implementation in Qiskit is available as open-source code, supporting and future exploration of quantum permutation-based algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uniform superpositions over permutations play a central role in quantum error correction, cryptography, and combinatorial optimisation. We introduce a simple yet powerful quantisation of the classical Fisher-Yates shuffle, yielding a suite of efficient quantum algorithms for preparing such superpositions on composite registers. Our method replaces classical randomness with coherent control, enabling five variants that differ in their output structure and entanglement with ancillary systems. We demonstrate that this construction achieves the best known combination of asymptotic resources among all existing approaches, requiring only $\mathcal{O}(n \log(n))$ qubits and $\mathcal{O}(n^{2} \log(n))$ gates and circuit depth. These results position the quantum Fisher-Yates shuffle as a strong candidate for optimality within this class of algorithms. Our work unifies several prior constructions under a single, transparent framework and opens up new directions for quantum state preparation using classical combinatorial insights. Our implementation in Qiskit is available as open-source code, supporting reproducibility and future exploration of quantum permutation-based algorithms.
Related papers
- Quantum Algorithms for Stochastic Differential Equations: A Schrödingerisation Approach [29.662683446339194]
We propose quantum algorithms for linear differential equations.<n>The gate complexity of our algorithms exhibits an $mathcalO(dlog(Nd))$ dependence on the dimensions.<n>The algorithms are numerically verified for the Ornstein-Uhlenbeck processes, Brownian motions, and one-dimensional L'evy flights.
arXiv Detail & Related papers (2024-12-19T14:04:11Z) - Halving the Cost of Quantum Algorithms with Randomization [0.138120109831448]
Quantum signal processing (QSP) provides a systematic framework for implementing a transformation of a linear operator.<n>Recent works have developed randomized compiling, a technique that promotes a unitary gate to a quantum channel.<n>Our algorithm implements a probabilistic mixture of randomizeds, strategically chosen so that the average evolution converges to that of a target function, with an error quadratically smaller than that of an equivalent individual.
arXiv Detail & Related papers (2024-09-05T17:56:51Z) - Random sampling of permutations through quantum circuits [0.0]
We introduce classical algorithms for random sampling of permutations, drawing inspiration from the Steinhaus-Johnson-Trotter algorithm.
We develop a quantum analogue of these classical algorithms using a quantum circuit model for random sampling of permutations for $n$-qubit systems.
arXiv Detail & Related papers (2024-09-04T18:19:30Z) - Generalised Coupling and An Elementary Algorithm for the Quantum Schur
Transform [0.0]
We present a transparent algorithm for implementing the qubit quantum Schur transform.
We study the associated Schur states, which consist of qubits coupled via Clebsch-Gordan coefficients.
It is shown that Wigner 6-j symbols and SU(N) Clebsch-Gordan coefficients naturally fit our framework.
arXiv Detail & Related papers (2023-05-06T15:19:52Z) - Quantum Dueling: an Efficient Solution for Combinatorial Optimization [3.7398607565670536]
We present a new algorithm for generic optimization, which we term quantum dueling.
Quantum dueling innovates by integrating an additional qubit register, effectively creating a dueling'' scenario where two sets of solutions compete.
Our work demonstrates that increasing the number of qubits allows the development of previously unthought-of algorithms, paving the way for advancement of efficient quantum algorithm design.
arXiv Detail & Related papers (2023-02-20T18:33:55Z) - One-Way Ticket to Las Vegas and the Quantum Adversary [78.33558762484924]
We show that quantum Las Vegas query complexity is exactly equal to the quantum adversary bound.
This is achieved by transforming a feasible solution to the adversary inversion problem into a quantum query algorithm.
arXiv Detail & Related papers (2023-01-05T11:05:22Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
We propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases.
We show that the proposed filter design algorithm always converges to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods.
arXiv Detail & Related papers (2021-07-03T16:07:30Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Inspired Adaptive Boosting [0.0]
We show that the quantum ensemble method does not have advantage over classical algorithms.
We propose methods inspired by combining the quantum ensemble method with adaptive boosting.
The algorithms were tested and found to be comparable to the AdaBoost algorithm on publicly available data sets.
arXiv Detail & Related papers (2021-02-01T16:33:14Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
We introduce an efficient algorithm that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set.
Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.
arXiv Detail & Related papers (2020-04-09T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.