論文の概要: LLM-Guided Open RAN: Empowering Hierarchical RAN Intelligent Control
- arxiv url: http://arxiv.org/abs/2504.18062v1
- Date: Fri, 25 Apr 2025 04:18:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.639245
- Title: LLM-Guided Open RAN: Empowering Hierarchical RAN Intelligent Control
- Title(参考訳): LLM-Guided Open RAN:階層的RANインテリジェント制御
- Authors: Lingyan Bao, Sinwoong Yun, Jemin Lee, Tony Q. S. Quek,
- Abstract要約: 本稿では,RCC間の協調性を改善するために,LLM-hRICフレームワークを提案する。
このフレームワークは、LLMと強化学習(RL)を統合し、効率的なネットワークリソース管理を実現する。
我々は,LLM-hRICフレームワークをIAB(Integrated Access and Backhaul)ネットワーク設定で評価した。
- 参考スコア(独自算出の注目度): 56.94324843095396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) have led to a significant interest in deploying LLMempowered algorithms for wireless communication networks. Meanwhile, open radio access network (O-RAN) techniques offer unprecedented flexibility, with the non-real-time (non-RT) radio access network (RAN) intelligent controller (RIC) (non-RT RIC) and near-real-time (near-RT) RIC (near-RT RIC) components enabling intelligent resource management across different time scales. In this paper, we propose the LLM empowered hierarchical RIC (LLM-hRIC) framework to improve the collaboration between RICs. This framework integrates LLMs with reinforcement learning (RL) for efficient network resource management. In this framework, LLMs-empowered non-RT RICs provide strategic guidance and high-level policies based on environmental context. Concurrently, RL-empowered near-RT RICs perform low-latency tasks based on strategic guidance and local near-RT observation. We evaluate the LLM-hRIC framework in an integrated access and backhaul (IAB) network setting. Simulation results demonstrate that the proposed framework achieves superior performance. Finally, we discuss the key future challenges in applying LLMs to O-RAN.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、無線通信ネットワークにLLMemを利用したアルゴリズムをデプロイすることに大きな関心を惹き付けている。
一方、オープン無線アクセスネットワーク (O-RAN) 技術は、非リアルタイム(非RT)無線アクセスネットワーク (RAN) インテリジェントコントローラ (RIC) と近リアルタイム(近RT) RIC (ニアRT RIC) コンポーネントにより、異なる時間スケールでインテリジェントリソース管理を可能にする、前例のない柔軟性を提供する。
本稿では,LLM による階層型 RIC (LLM-hRIC) フレームワークを提案する。
このフレームワークは、LLMと強化学習(RL)を統合し、効率的なネットワークリソース管理を実現する。
この枠組みでは, LLMを内蔵した非RTRCCが環境条件に基づく戦略的ガイダンスと高レベルポリシーを提供する。
同時に、RLを用いた近RT RICは、戦略的ガイダンスと局所的近RT観測に基づいて低レイテンシなタスクを実行する。
我々は,LLM-hRICフレームワークをIAB(Integrated Access and Backhaul)ネットワーク設定で評価した。
シミュレーションの結果,提案手法が優れた性能を発揮することが示された。
最後に,LLMをO-RANに適用する上での課題について論じる。
関連論文リスト
- DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey [62.697565282841026]
強化学習(RL)に基づく大規模言語モデル(LLM)が注目されている。
無線ネットワークは、RLベースのLLMの強化を必要とする。
無線ネットワークは、RLベースのLLMの効率的なトレーニング、デプロイメント、分散推論のための重要な基盤を提供する。
論文 参考訳(メタデータ) (2025-03-13T01:59:11Z) - An Autonomous Network Orchestration Framework Integrating Large Language Models with Continual Reinforcement Learning [13.3347292702828]
本稿では,SemCom対応SAGINのためのARC(Autonomous Reinforcement Coordination)というフレームワークを提案する。
ARCはオーケストレーションを2層に分割し、LLMを高レベルの計画に、RLエージェントを低レベルの意思決定に利用している。
論文 参考訳(メタデータ) (2025-02-22T11:53:34Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) は、前例のない効率性と適応性を持つ現代のネットワークの変動要求に対処する。
本稿では,モデルに依存しないメタラーニング(MAML)にインスパイアされたメタ深層強化学習(Meta-DRL)戦略を提案する。
論文 参考訳(メタデータ) (2024-09-30T23:04:30Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
大きな言語モデル(LLM)は、言語理解と人間に似たテキスト生成に革命をもたらした。
本稿では,6G(第6世代)無線通信技術におけるLCMの電力利用技術について検討する。
無線通信におけるネットワーク展開にLLMを利用する新しい強化学習(RL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-22T05:19:51Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - Flexible Payload Configuration for Satellites using Machine Learning [33.269035910233704]
現在のGEOシステムは、周波数使用率の少ないマルチビームフットプリントを用いて、ビームに電力と帯域幅を均一に分散している。
近年の研究では、不均一な交通シナリオにおけるこのアプローチの限界が明らかにされており、非効率性につながっている。
本稿では、無線リソース管理(RRM)に対する機械学習(ML)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-18T13:45:17Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
新たなOpen Radio Access Network(O-RAN)におけるデバイスの大量ランダムアクセスは、アクセス制御と管理に大きな課題をもたらします。
閉ループアクセス制御の強化学習(RL)支援方式を提案する。
深部RL支援SAUDは、連続的かつ高次元の状態と行動空間を持つ複雑な環境を解決するために提案されている。
論文 参考訳(メタデータ) (2023-03-05T12:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。