論文の概要: Flexible Payload Configuration for Satellites using Machine Learning
- arxiv url: http://arxiv.org/abs/2310.11966v1
- Date: Wed, 18 Oct 2023 13:45:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 11:36:55.484039
- Title: Flexible Payload Configuration for Satellites using Machine Learning
- Title(参考訳): 機械学習を用いた衛星のフレキシブルペイロード構成
- Authors: Marcele O. K. Mendonca, Flor G. Ortiz-Gomez, Jorge Querol, Eva
Lagunas, Juan A. V\'asquez Peralvo, Victor Monzon Baeza, Symeon Chatzinotas
and Bjorn Ottersten
- Abstract要約: 現在のGEOシステムは、周波数使用率の少ないマルチビームフットプリントを用いて、ビームに電力と帯域幅を均一に分散している。
近年の研究では、不均一な交通シナリオにおけるこのアプローチの限界が明らかにされており、非効率性につながっている。
本稿では、無線リソース管理(RRM)に対する機械学習(ML)に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 33.269035910233704
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Satellite communications, essential for modern connectivity, extend access to
maritime, aeronautical, and remote areas where terrestrial networks are
unfeasible. Current GEO systems distribute power and bandwidth uniformly across
beams using multi-beam footprints with fractional frequency reuse. However,
recent research reveals the limitations of this approach in heterogeneous
traffic scenarios, leading to inefficiencies. To address this, this paper
presents a machine learning (ML)-based approach to Radio Resource Management
(RRM).
We treat the RRM task as a regression ML problem, integrating RRM objectives
and constraints into the loss function that the ML algorithm aims at
minimizing. Moreover, we introduce a context-aware ML metric that evaluates the
ML model's performance but also considers the impact of its resource allocation
decisions on the overall performance of the communication system.
- Abstract(参考訳): 現代の接続に不可欠な衛星通信は、地上ネットワークが実現不可能な海洋、航空、遠隔地へのアクセスを拡大する。
現在のGEOシステムは、周波数再利用の少ないマルチビームフットプリントを用いて、ビームに電力と帯域幅を均一に分散している。
しかし、最近の研究では、不均一な交通シナリオにおけるこのアプローチの限界が明らかにされており、非効率性につながっている。
そこで本稿では,無線リソース管理(RRM)に対する機械学習(ML)に基づくアプローチを提案する。
rrmタスクを回帰ml問題として扱い、rrmの目的と制約をmlアルゴリズムの最小化を目的とした損失関数に統合する。
さらに,MLモデルの性能を評価する文脈対応のMLメトリクスを導入するとともに,リソース割り当て決定が通信システム全体の性能に与える影響についても検討する。
関連論文リスト
- Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN [6.326120268549892]
Open Radio Access Network (O-RAN) は、前例のない効率性と適応性を持つ現代のネットワークの変動要求に対処する。
本稿では,モデルに依存しないメタラーニング(MAML)にインスパイアされたメタ深層強化学習(Meta-DRL)戦略を提案する。
論文 参考訳(メタデータ) (2024-09-30T23:04:30Z) - Load Balancing in Federated Learning [3.2999744336237384]
Federated Learning(FL)は、複数のリモートデバイスに分散したデータからの学習を可能にする、分散機械学習フレームワークである。
本稿では,情報時代に基づくスケジューリングポリシーの負荷指標を提案する。
マルコフ連鎖モデルの最適パラメータを確立し、シミュレーションによりアプローチを検証する。
論文 参考訳(メタデータ) (2024-08-01T00:56:36Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - RIS-empowered Topology Control for Distributed Learning in Urban Air
Mobility [35.04722426910211]
アーバン・エアモビリティ(UAM)は、輸送システムの革命として想定される、地上から地上に近い空間に車両を拡大する。
この課題を克服するために、リソース制限されたデバイスが協調的に深層学習(DL)を行うことを可能にするために、フェデレーション・ラーニング(FL)や他の協調学習が提案されている。
本稿では,分散学習を支援する再構成可能なインテリジェントサーフェス (RIS) について検討する。
論文 参考訳(メタデータ) (2024-03-08T08:05:50Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
本稿では,無線ネットワークにおける資源管理問題を解決するためのステート拡張アルゴリズムを提案する。
提案アルゴリズムは, RRM決定を可能, ほぼ最適に行うことができることを示す。
論文 参考訳(メタデータ) (2022-07-05T18:02:54Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
我々は、ユーザ当たりの最小容量制約でレジリエントな無線リソース管理問題を定式化する。
有限個のパラメータ集合を用いてユーザ選択と電力制御ポリシーをパラメータ化できることを示す。
このような適応により,提案手法は平均レートと5番目のパーセンタイルレートとの良好なトレードオフを実現する。
論文 参考訳(メタデータ) (2022-03-07T19:40:39Z) - Towards Intelligent Load Balancing in Data Centers [0.5505634045241288]
本稿では,機械学習とネットワークシステムのギャップを埋めるため,Aquariusを提案する。
オフラインデータ分析とオンラインモデル展開の両方を現実的なシステムで実行する能力を示している。
論文 参考訳(メタデータ) (2021-10-27T12:47:30Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
機械学習(ML)は、第5世代(5G)通信システムなどのための有望なイネーブルである。
本稿では、関連するコミュニケーションとMLの原則を概観し、選択したユースケースでコミュニケーション効率と分散学習フレームワークを提示することを目的とする。
論文 参考訳(メタデータ) (2020-08-06T12:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。