論文の概要: Tracking Articulatory Dynamics in Speech with a Fixed-Weight BiLSTM-CNN Architecture
- arxiv url: http://arxiv.org/abs/2504.18099v1
- Date: Fri, 25 Apr 2025 05:57:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.65897
- Title: Tracking Articulatory Dynamics in Speech with a Fixed-Weight BiLSTM-CNN Architecture
- Title(参考訳): 固定重BiLSTM-CNNアーキテクチャを用いた音声の追従調律ダイナミクス
- Authors: Leena G Pillai, D. Muhammad Noorul Mubarak, Elizabeth Sherly,
- Abstract要約: 本稿では,ある音声音響に係わる舌と唇の調音特徴を予測するための新しい手法を提案する。
提案するネットワークは,同時記録音声とEMA(Electromagnetic Articulography)データセットの2つのデータセットで訓練されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech production is a complex sequential process which involve the coordination of various articulatory features. Among them tongue being a highly versatile active articulator responsible for shaping airflow to produce targeted speech sounds that are intellectual, clear, and distinct. This paper presents a novel approach for predicting tongue and lip articulatory features involved in a given speech acoustics using a stacked Bidirectional Long Short-Term Memory (BiLSTM) architecture, combined with a one-dimensional Convolutional Neural Network (CNN) for post-processing with fixed weights initialization. The proposed network is trained with two datasets consisting of simultaneously recorded speech and Electromagnetic Articulography (EMA) datasets, each introducing variations in terms of geographical origin, linguistic characteristics, phonetic diversity, and recording equipment. The performance of the model is assessed in Speaker Dependent (SD), Speaker Independent (SI), corpus dependent (CD) and cross corpus (CC) modes. Experimental results indicate that the proposed model with fixed weights approach outperformed the adaptive weights initialization with in relatively minimal number of training epochs. These findings contribute to the development of robust and efficient models for articulatory feature prediction, paving the way for advancements in speech production research and applications.
- Abstract(参考訳): 音声生成は、様々な調音特徴の調整を含む複雑な逐次過程である。
そのうちの舌は、知的で明瞭で明瞭なターゲット音声を生成するために気流を形作る、非常に多目的な能動的調音器である。
本稿では,両方向長短期記憶(BiLSTM)アーキテクチャと1次元畳み込みニューラルネットワーク(CNN)を組み合わせた音声音響における舌と唇の調音特徴の予測手法を提案する。
提案手法は, 地理的起源, 言語的特徴, 音声的多様性, 記録装置の2つのデータセットを同時記録した音声と電磁的アーティキュログラフィー(EMA)データセットを用いて学習する。
モデルの性能は、話者依存(SD)、話者依存(SI)、コーパス依存(CD)、クロスコーパス(CC)モードで評価される。
実験結果から, 固定重み付きモデルの方が適応重み初期化よりも比較的少ない訓練エポック数で優れていたことが示唆された。
これらの知見は, 音声合成研究および応用における進歩の道を開くことを目的として, 音声特徴予測のための頑健で効率的なモデルの開発に寄与する。
関連論文リスト
- SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation [56.913182262166316]
CoIG(Chain-of-Information Generation)は、大規模音声生成において意味情報と知覚情報を分離する手法である。
SpeechGPT-Genはセマンティックおよび知覚情報モデリングにおいて効率的である。
ゼロショット音声変換、ゼロショット音声変換、音声音声対話に優れる。
論文 参考訳(メタデータ) (2024-01-24T15:25:01Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
我々は、文脈言語学習(ICLL)において、私たちが用語する新しいモデル問題群(英語版)のレンズを通してICLを研究する。
我々は,通常のICLLタスクにおいて,多種多様なニューラルシーケンスモデルを評価する。
論文 参考訳(メタデータ) (2024-01-23T18:59:21Z) - Cross-modal Audio-visual Co-learning for Text-independent Speaker
Verification [55.624946113550195]
本稿では,モーダルな発話協調学習パラダイムを提案する。
モーダル変換相関を学習するために、2つのクロスモーダルブースターを導入する。
LRSLip3, GridLip, LomGridLip, VoxLip を用いた実験の結果,提案手法は平均相対性能を60%, 20%向上させることがわかった。
論文 参考訳(メタデータ) (2023-02-22T10:06:37Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
我々は、自己教師型音声表現学習の進歩に乗じて、人間の聴覚システムの最先端モデルを作成する。
これらの結果から,ヒト大脳皮質における音声処理の異なる段階に関連する情報の階層構造を,自己教師型モデルで効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2022-05-27T22:04:02Z) - Repeat after me: Self-supervised learning of acoustic-to-articulatory
mapping by vocal imitation [9.416401293559112]
そこで本稿では,限定的な解釈可能な音声パラメータ集合から複雑な音声刺激を再現可能な,事前学習されたニューラル音声合成器を組み合わせた音声生成の計算モデルを提案する。
フォワードモデルと逆モデルの両方は、異なる話者からの生の音響のみの音声データから、自己指導的な方法で共同で訓練される。
模倣シミュレーションは客観的かつ主観的に評価され、非常に奨励的なパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-04-05T15:02:49Z) - A Complementary Joint Training Approach Using Unpaired Speech and Text
for Low-Resource Automatic Speech Recognition [25.473191378558138]
非ペアデータを利用して、一般的なシーケンス・ツー・シーケンスモデルをトレーニングする。
音声-疑似ラベルペアと合成音声テキストペアの相補性に着想を得て,補足的関節訓練(CJT)法を提案する。
論文 参考訳(メタデータ) (2022-04-05T07:02:53Z) - Correlation based Multi-phasal models for improved imagined speech EEG
recognition [22.196642357767338]
本研究の目的は,特定の音声単位に対応する音声の動きを,話し,想像,実行しながら記録された多相脳波データに含まれる並列情報から利益を得ることである。
ニューラルネットワークを用いた二相共通表現学習モジュールは、解析フェーズと支援フェーズ間の相関をモデル化する。
提案手法は復号化時の多相データの非可利用性をさらに扱う。
論文 参考訳(メタデータ) (2020-11-04T09:39:53Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z) - Multi-modal Automated Speech Scoring using Attention Fusion [46.94442359735952]
本稿では,非母国英語話者の自発音声の自動評価のための,多モーダルなエンドツーエンドニューラルアプローチを提案する。
我々は、スペクトルや転写から音響的および語彙的手がかりを符号化するために、双方向のリカレント畳み込みニューラルネットワークと双方向長短期記憶ニューラルネットワークを用いる。
語彙と音響の両方への注意が組み合わさってシステム全体の性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2020-05-17T07:53:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。