論文の概要: Multi-modal Automated Speech Scoring using Attention Fusion
- arxiv url: http://arxiv.org/abs/2005.08182v2
- Date: Sun, 28 Nov 2021 08:25:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 05:53:07.740562
- Title: Multi-modal Automated Speech Scoring using Attention Fusion
- Title(参考訳): 注意融合を用いたマルチモーダル自動音声スコアリング
- Authors: Manraj Singh Grover, Yaman Kumar, Sumit Sarin, Payman Vafaee, Mika
Hama, Rajiv Ratn Shah
- Abstract要約: 本稿では,非母国英語話者の自発音声の自動評価のための,多モーダルなエンドツーエンドニューラルアプローチを提案する。
我々は、スペクトルや転写から音響的および語彙的手がかりを符号化するために、双方向のリカレント畳み込みニューラルネットワークと双方向長短期記憶ニューラルネットワークを用いる。
語彙と音響の両方への注意が組み合わさってシステム全体の性能が大幅に向上することがわかった。
- 参考スコア(独自算出の注目度): 46.94442359735952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a novel multi-modal end-to-end neural approach for
automated assessment of non-native English speakers' spontaneous speech using
attention fusion. The pipeline employs Bi-directional Recurrent Convolutional
Neural Networks and Bi-directional Long Short-Term Memory Neural Networks to
encode acoustic and lexical cues from spectrograms and transcriptions,
respectively. Attention fusion is performed on these learned predictive
features to learn complex interactions between different modalities before
final scoring. We compare our model with strong baselines and find combined
attention to both lexical and acoustic cues significantly improves the overall
performance of the system. Further, we present a qualitative and quantitative
analysis of our model.
- Abstract(参考訳): 本研究では,非母国英語話者の自発音声の自動評価のためのマルチモーダル・エンド・ツー・エンド・ニューラルアプローチを提案する。
このパイプラインは、双方向のリカレント畳み込みニューラルネットワークと双方向の長期記憶ニューラルネットワークを使用して、それぞれスペクトログラムと転写から音響的および語彙的手がかりを符号化する。
これらの学習した予測特徴に対して注意融合を行い、最終スコアの前に異なるモーダル間の複雑な相互作用を学習する。
本モデルと強力なベースラインを比較し,語彙的および音響的手がかりを組み合わせることで,システム全体の性能が著しく向上することを示す。
さらに,本モデルの質的,定量的な分析を行う。
関連論文リスト
- EEG-Based Speech Decoding: A Novel Approach Using Multi-Kernel Ensemble Diffusion Models [0.0]
本稿では脳波を用いた音声分類のためのアンサンブル学習フレームワークを提案する。
アンサンブルは、51、101、201のカーネルサイズを持つ3つのモデルで構成されている。
その結果,提案手法は個々のモデルや既存の最先端技術よりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-14T09:23:58Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Canonical Cortical Graph Neural Networks and its Application for Speech
Enhancement in Future Audio-Visual Hearing Aids [0.726437825413781]
本稿では, 層内変調を用いたマルチモーダル情報と正準相関解析(CCA)を組み合わせた, より生物学的に妥当な自己教師型機械学習手法を提案する。
この手法は、よりクリーンなオーディオ再構成とエネルギー効率の両方を考慮した最近の最先端の結果より優れており、スモーザーでスモーザーなニューロンの発火速度分布によって説明されている。
論文 参考訳(メタデータ) (2022-06-06T15:20:07Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
重なり合う音声のダイアリゼーションを単一ラベル予測問題として再構成する。
話者埋め込み認識型ニューラルダイアリゼーション(SEND)システムを提案する。
論文 参考訳(メタデータ) (2022-03-18T06:40:39Z) - Deep Learning For Prominence Detection In Children's Read Speech [13.041607703862724]
本稿では, 幼児の口臭度評価に際し, 単語検出に係わる特徴を学習するためのセグメント音声波形を用いたシステムを提案する。
単語レベルの特徴とシーケンス情報の両方を取り入れた選択されたCRNN(畳み込みリカレントニューラルネットワーク)フレームワークは、知覚的に動機付けられたSincNetフィルタの恩恵を受けている。
論文 参考訳(メタデータ) (2021-10-27T08:51:42Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
機械知覚モデルは典型的にはモダリティに特化しており、単調なベンチマークのために最適化されている。
複数の層でのモジュラリティ融合に「融合」を用いる新しいトランスフォーマーアーキテクチャを導入する。
我々は、徹底的なアブレーション研究を行い、複数のオーディオ視覚分類ベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2021-06-30T22:44:12Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
論文 参考訳(メタデータ) (2021-06-25T07:51:35Z) - Correlation based Multi-phasal models for improved imagined speech EEG
recognition [22.196642357767338]
本研究の目的は,特定の音声単位に対応する音声の動きを,話し,想像,実行しながら記録された多相脳波データに含まれる並列情報から利益を得ることである。
ニューラルネットワークを用いた二相共通表現学習モジュールは、解析フェーズと支援フェーズ間の相関をモデル化する。
提案手法は復号化時の多相データの非可利用性をさらに扱う。
論文 参考訳(メタデータ) (2020-11-04T09:39:53Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。