A Data-Centric Approach to 3D Semantic Segmentation of Railway Scenes
- URL: http://arxiv.org/abs/2504.18213v1
- Date: Fri, 25 Apr 2025 09:46:31 GMT
- Title: A Data-Centric Approach to 3D Semantic Segmentation of Railway Scenes
- Authors: Nicolas Münger, Max Peter Ronecker, Xavier Diaz, Michael Karner, Daniel Watzenig, Jan Skaloud,
- Abstract summary: This paper introduces two targeted data augmentation methods to improve segmentation performance on the railway-specific OSDaR23 dataset.<n>The person instance pasting method enhances segmentation of pedestrians at distant ranges by injecting realistic variations into the dataset.<n>The track sparsification method redistributes point density in LiDAR scans, improving track segmentation at far distances with minimal impact on close-range accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LiDAR-based semantic segmentation is critical for autonomous trains, requiring accurate predictions across varying distances. This paper introduces two targeted data augmentation methods designed to improve segmentation performance on the railway-specific OSDaR23 dataset. The person instance pasting method enhances segmentation of pedestrians at distant ranges by injecting realistic variations into the dataset. The track sparsification method redistributes point density in LiDAR scans, improving track segmentation at far distances with minimal impact on close-range accuracy. Both methods are evaluated using a state-of-the-art 3D semantic segmentation network, demonstrating significant improvements in distant-range performance while maintaining robustness in close-range predictions. We establish the first 3D semantic segmentation benchmark for OSDaR23, demonstrating the potential of data-centric approaches to address railway-specific challenges in autonomous train perception.
Related papers
- 3DLabelProp: Geometric-Driven Domain Generalization for LiDAR Semantic Segmentation in Autonomous Driving [7.35996217853436]
Domain generalization aims to find ways for deep learning models to maintain their performance despite domain shifts between training and inference datasets.<n>This is particularly important for models that need to be robust or are costly to train.<n>This work proposes a geometry-based approach, leveraging the sequential structure of LiDAR sensors, which sets it apart from the learning-based methods commonly found in the literature.
arXiv Detail & Related papers (2025-01-24T16:22:35Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization.
We propose a new dataset, Navya 3D (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain.
It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds.
arXiv Detail & Related papers (2023-02-16T13:41:19Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - DiResNet: Direction-aware Residual Network for Road Extraction in VHR
Remote Sensing Images [12.081877372552606]
We present a direction-aware residual network (DiResNet) that includes three main contributions.
The proposed method has advantages in both overall accuracy and F1-score.
arXiv Detail & Related papers (2020-05-14T19:33:21Z) - Wise Sliding Window Segmentation: A classification-aided approach for
trajectory segmentation [11.174536284571802]
We propose a supervised trajectory segmentation algorithm called Wise Sliding Window (WS-II)
WS-II processes the trajectory coordinates to find behavioral changes in space and time, generating an error signal.
We evaluate our method over three real datasets from different domains.
arXiv Detail & Related papers (2020-03-23T12:55:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.