論文の概要: Even Small Reasoners Should Quote Their Sources: Introducing the Pleias-RAG Model Family
- arxiv url: http://arxiv.org/abs/2504.18225v1
- Date: Fri, 25 Apr 2025 10:17:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.734916
- Title: Even Small Reasoners Should Quote Their Sources: Introducing the Pleias-RAG Model Family
- Title(参考訳): Pleias-RAGモデルファミリーの紹介
- Authors: Pierre-Carl Langlais, Pavel Chizhov, Mattia Nee, Carlos Rosas Hinostroza, Matthieu Delsart, Irène Girard, Othman Hicheur, Anastasia Stasenko, Ivan P. Yamshchikov,
- Abstract要約: Pleias-RAG-350m と Pleias-RAG-1B は,大規模合成データセット上で中間学習を行う。
引用と接地をリテラルでサポートし、RAGに関連する複数の機能を再統合する。
ヨーロッパの主要言語間で一貫したRAG性能を維持している唯一のSLMである。
- 参考スコア(独自算出の注目度): 6.201126992242438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new generation of small reasoning models for RAG, search, and source summarization. Pleias-RAG-350m and Pleias-RAG-1B are mid-trained on a large synthetic dataset emulating the retrieval of a wide variety of multilingual open sources from the Common Corpus. They provide native support for citation and grounding with literal quotes and reintegrate multiple features associated with RAG workflows, such as query routing, query reformulation, and source reranking. Pleias-RAG-350m and Pleias-RAG-1B outperform SLMs below 4 billion parameters on standardized RAG benchmarks (HotPotQA, 2wiki) and are competitive with popular larger models, including Qwen-2.5-7B, Llama-3.1-8B, and Gemma-3-4B. They are the only SLMs to date maintaining consistent RAG performance across leading European languages and ensuring systematic reference grounding for statements. Due to their size and ease of deployment on constrained infrastructure and higher factuality by design, the models unlock a range of new use cases for generative AI.
- Abstract(参考訳): 我々は、RAG、検索、ソース要約のための新しい世代の小さな推論モデルを導入する。
Pleias-RAG-350m と Pleias-RAG-1B は、Common Corpus から様々な多言語オープンソースの検索をエミュレートした大規模な合成データセット上で中級訓練を行っている。
引用と接地をリテラルでサポートし、クエリルーティングやクエリの修正、ソースの再ランクなど、RAGワークフローに関連する複数の機能を再統合する。
Pleias-RAG-350m と Pleias-RAG-1B は、標準化されたRAGベンチマーク (HotPotQA, 2wiki) の40億パラメータ以下で、Qwen-2.5-7B、Llama-3.1-8B、Gemma-3-4B などの一般的な大型モデルと競合している。
これらはヨーロッパの主要言語間で一貫したRAG性能を維持し、ステートメントの体系的な参照基盤を確保する唯一のSLMである。
そのサイズと、制約のあるインフラストラクチャへのデプロイの容易さ、設計による現実性の向上により、モデルは生成AIのさまざまな新しいユースケースを解放する。
関連論文リスト
- LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing [70.35888047551643]
本稿では,RAGとLC LLMを厳格に比較するための新しいベンチマークであるLaRAを提案する。
LaRAは4つのQAタスクカテゴリと3種類の自然発生長文の2326のテストケースを含んでいる。
RAGとLCの最適選択は,モデルのパラメータサイズ,長文機能,コンテキスト長,タスクタイプ,取得したチャンクの特性など,複雑な相互作用に依存する。
論文 参考訳(メタデータ) (2025-02-14T08:04:22Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions [25.952471869592443]
RAG-Instructは、任意のソースコーパスに基づいて、多種多様な高品質なRAG命令データを合成する一般的な方法である。
我々はウィキペディアから40Kの命令データセットを構築し、多様なRAGシナリオとタスクを包括的にカバーする。
実験により、RAG-InstructはLLMのRAG能力を効果的に向上し、強力なゼロショット性能を実現することが示された。
論文 参考訳(メタデータ) (2024-12-31T09:00:51Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation [8.377398103067508]
我々は、RAGのユースケースのための大規模言語モデルを拡張するためのオープンソースのフレームワークであるRAG Foundryを紹介します。
RAG Foundryはデータ生成、トレーニング、推論、評価を単一のワークフローに統合する。
多様なRAG構成を持つLlama-3およびPhi-3モデルを拡張し,微調整することで,フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2024-08-05T15:16:24Z) - RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs [60.38044044203333]
大規模言語モデル(LLM)は、通常、検索拡張生成(RAG)において、レトリバーからトップkコンテキストを利用する。
本稿では,RAGにおける文脈ランク付けと回答生成の両目的のために,単一のLLMをチューニング可能な新しい命令微調整フレームワークであるRanRAGを提案する。
例えば、GPT-4-0613, GPT-4-turbo-2024-0409, ChatQA-1.5, RAGベンチマークの最先端性能を備えたオープンソースモデルなどである。
論文 参考訳(メタデータ) (2024-07-02T17:59:17Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generationは、外部知識による大規模言語モデルの拡張を可能にする。
一貫性のないベンチマークは、アプローチを比較し、パイプライン内の各コンポーネントの影響を理解する上で大きな課題となる。
本研究では,RAGを体系的に評価するための基礎となるベストプラクティスと,RAG実験を標準化した再現可能な研究用ライブラリであるBERGENについて検討する。
論文 参考訳(メタデータ) (2024-07-01T09:09:27Z) - xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token [108.7069350303884]
xRAGは、検索拡張生成に適した、革新的なコンテキスト圧縮手法である。
xRAGは、言語モデル表現空間に文書の埋め込みをシームレスに統合する。
実験の結果、xRAGは6つの知識集約タスクで平均10%以上の改善を達成していることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:15:17Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
検索増強世代(RAG)は、かなりの研究関心を集めている。
既存のRAGツールキットは、しばしば重くて柔軟であり、研究者のカスタマイズのニーズを満たすことができない。
我々のツールキットは16の高度なRAGメソッドを実装し、38のベンチマークデータセットを収集し、整理した。
論文 参考訳(メタデータ) (2024-05-22T12:12:40Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。