論文の概要: FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research
- arxiv url: http://arxiv.org/abs/2405.13576v2
- Date: Mon, 24 Feb 2025 02:46:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:48:46.823691
- Title: FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research
- Title(参考訳): FlashRAG: 効率的に検索可能な次世代研究のためのモジュールツールキット
- Authors: Jiajie Jin, Yutao Zhu, Guanting Dong, Yuyao Zhang, Xinyu Yang, Chenghao Zhang, Tong Zhao, Zhao Yang, Zhicheng Dou, Ji-Rong Wen,
- Abstract要約: 検索増強世代(RAG)は、かなりの研究関心を集めている。
既存のRAGツールキットは、しばしば重くて柔軟であり、研究者のカスタマイズのニーズを満たすことができない。
我々のツールキットは16の高度なRAGメソッドを実装し、38のベンチマークデータセットを収集し、整理した。
- 参考スコア(独自算出の注目度): 70.6584488911715
- License:
- Abstract: With the advent of large language models (LLMs) and multimodal large language models (MLLMs), the potential of retrieval-augmented generation (RAG) has attracted considerable research attention. Various novel algorithms and models have been introduced to enhance different aspects of RAG systems. However, the absence of a standardized framework for implementation, coupled with the inherently complex RAG process, makes it challenging and time-consuming for researchers to compare and evaluate these approaches in a consistent environment. Existing RAG toolkits, such as LangChain and LlamaIndex, while available, are often heavy and inflexibly, failing to meet the customization needs of researchers. In response to this challenge, we develop \ours{}, an efficient and modular open-source toolkit designed to assist researchers in reproducing and comparing existing RAG methods and developing their own algorithms within a unified framework. Our toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark datasets. It has various features, including a customizable modular framework, multimodal RAG capabilities, a rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics. Our toolkit and resources are available at https://github.com/RUC-NLPIR/FlashRAG.
- Abstract(参考訳): 大規模言語モデル (LLMs) と多モーダル大規模言語モデル (MLLMs) の出現により, 検索強化世代 (RAG) の可能性が注目されている。
RAGシステムの様々な側面を強化するために、様々な新しいアルゴリズムとモデルが導入されている。
しかしながら、実装のための標準化されたフレームワークがないことは、本質的に複雑なRAGプロセスと相まって、研究者がこれらのアプローチを一貫した環境で比較し評価することは困難で時間がかかる。
既存のRAGツールキット、例えばLangChainやLlamaIndexは利用可能だが、しばしば重くて柔軟性に欠ける。
この課題に対応するために,既存のRAG手法を再現・比較し,統一されたフレームワーク内で独自のアルゴリズムを開発する研究者を支援するために設計された,効率的でモジュール化されたオープンソースツールキットである \ours{} を開発した。
我々のツールキットは16の高度なRAGメソッドを実装し、38のベンチマークデータセットを収集し、整理した。
カスタマイズ可能なモジュール化フレームワーク、マルチモーダルRAG機能、実装済みRAGワークの豊富なコレクション、包括的なデータセット、効率的な補助的な前処理スクリプト、広範囲で標準的な評価指標など、さまざまな機能を備えている。
ツールキットとリソースはhttps://github.com/RUC-NLPIR/FlashRAG.comで公開されています。
関連論文リスト
- RAG-Gym: Optimizing Reasoning and Search Agents with Process Supervision [43.50113345998687]
RAG-Gymは、情報検索エージェントを、各検索ステップにおけるきめ細かいプロセス管理によって強化する統合最適化フレームワークである。
また、RAG-Gymフレームワーク内での応答推論と検索クエリ生成を相乗化する新しいエージェントアーキテクチャであるReSearchを提案する。
論文 参考訳(メタデータ) (2025-02-19T18:56:03Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - AutoRAG: Automated Framework for optimization of Retrieval Augmented Generation Pipeline [0.7060452824323817]
本稿では,与えられたデータセットに対して適切なRAGモジュールを自動的に識別するAutoRAGフレームワークを提案する。
AutoRAGはデータセットのためのRAGモジュールの最適な組み合わせを探索し、近似する。
実験結果とデータは公開されており、GitHubリポジトリからアクセスできます。
論文 参考訳(メタデータ) (2024-10-28T09:55:52Z) - Toward General Instruction-Following Alignment for Retrieval-Augmented Generation [63.611024451010316]
Retrieval-Augmented Generation (RAG) システムの効果的な適用には、自然な指示に従うことが不可欠である。
RAGシステムにおける命令追従アライメントのための,最初の自動化,拡張性,検証可能な合成パイプラインであるVIF-RAGを提案する。
論文 参考訳(メタデータ) (2024-10-12T16:30:51Z) - RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation [54.707460684650584]
大きな言語モデル(LLM)は対話、推論、知識保持における人間レベルの能力を示す。
現在の研究は、LLMに外部知識を組み込むことによって、このボトルネックに対処している。
RAGLABはモジュール的で研究指向のオープンソースライブラリで、6つの既存のアルゴリズムを再現し、RAGアルゴリズムを調査するための包括的なエコシステムを提供する。
論文 参考訳(メタデータ) (2024-08-21T07:20:48Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
本稿では,検索モジュールと生成モジュールの両方に対して,一連の診断指標を組み込んだ詳細な評価フレームワークであるRAGCheckerを提案する。
RAGCheckerは、他の評価指標よりも、人間の判断との相関が著しく優れている。
RAGCheckerのメトリクスは、より効果的なRAGシステムの開発において研究者や実践者を導くことができる。
論文 参考訳(メタデータ) (2024-08-15T10:20:54Z) - RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation [8.377398103067508]
我々は、RAGのユースケースのための大規模言語モデルを拡張するためのオープンソースのフレームワークであるRAG Foundryを紹介します。
RAG Foundryはデータ生成、トレーニング、推論、評価を単一のワークフローに統合する。
多様なRAG構成を持つLlama-3およびPhi-3モデルを拡張し,微調整することで,フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2024-08-05T15:16:24Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generationは、外部知識による大規模言語モデルの拡張を可能にする。
一貫性のないベンチマークは、アプローチを比較し、パイプライン内の各コンポーネントの影響を理解する上で大きな課題となる。
本研究では,RAGを体系的に評価するための基礎となるベストプラクティスと,RAG実験を標準化した再現可能な研究用ライブラリであるBERGENについて検討する。
論文 参考訳(メタデータ) (2024-07-01T09:09:27Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。