Time and Frequency Domain-based Anomaly Detection in Smart Meter Data for Distribution Network Studies
- URL: http://arxiv.org/abs/2504.18231v1
- Date: Fri, 25 Apr 2025 10:26:30 GMT
- Title: Time and Frequency Domain-based Anomaly Detection in Smart Meter Data for Distribution Network Studies
- Authors: Petar Labura, Tomislav Antic, Tomislav Capuder,
- Abstract summary: This paper focuses on methods for detecting and mitigating the impact of anomalies on power datasets.<n>It proposes an anomaly detection framework based on the Isolation Forest machine learning algorithm and Fast Fourier Transform filtering.<n>The importance of integrating anomaly detection methods is demonstrated in the analysis important for distribution networks with a high share of smart meters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The widespread integration of new technologies in low-voltage distribution networks on the consumer side creates the need for distribution system operators to perform advanced real-time calculations to estimate network conditions. In recent years, data-driven models based on machine learning and big data analysis have emerged for calculation purposes, leveraging the information available in large datasets obtained from smart meters and other advanced measurement infrastructure. However, existing data-driven algorithms do not take into account the quality of data collected from smart meters. They lack built-in anomaly detection mechanisms and fail to differentiate anomalies based on whether the value or context of anomalous data instances deviates from the norm. This paper focuses on methods for detecting and mitigating the impact of anomalies on the consumption of active and reactive power datasets. It proposes an anomaly detection framework based on the Isolation Forest machine learning algorithm and Fast Fourier Transform filtering that works in both the time and frequency domain and is unaffected by point anomalies or contextual anomalies of the power consumption data. The importance of integrating anomaly detection methods is demonstrated in the analysis important for distribution networks with a high share of smart meters.
Related papers
- A Transfer Learning Framework for Anomaly Detection in Multivariate IoT Traffic Data [6.229535970620059]
We propose a transfer learning-based model for anomaly detection in time-series datasets.<n>Unlike conventional methods, our approach does not require labeled data in either the source or target domains.<n> Empirical evaluations on novel intrusion detection datasets demonstrate that our model outperforms existing techniques.
arXiv Detail & Related papers (2025-01-26T02:03:49Z) - DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
We present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection)
It combines DBSCAN and learning-based anomaly detection.
It is shown to reliably detect different types of anomalies in both large and complex datasets.
arXiv Detail & Related papers (2024-05-13T13:47:15Z) - Anomaly Detection in Power Grids via Context-Agnostic Learning [4.865842426618145]
Given time-series measurement values coming from a fixed set of sensors on the grid, can we identify anomalies in the network topology or measurement data?
Recent data-driven ML techniques have shown promise by using a combination of current and historical data for anomaly detection.
We propose a novel context-aware anomaly detection algorithm, GridCAL, that considers the effect of regular topology and load/generation changes.
arXiv Detail & Related papers (2024-04-11T16:37:01Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism.
With "dirty" data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training.
arXiv Detail & Related papers (2022-06-08T19:39:51Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse [5.716360276016705]
Edge computing enabled smart greenhouse is a representative application of Internet of Things technology.
Traditional anomaly detection algorithms have not properly considered the inherent characteristics of data stream produced by wireless sensor.
arXiv Detail & Related papers (2021-07-28T13:32:12Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.