Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse
- URL: http://arxiv.org/abs/2107.13353v1
- Date: Wed, 28 Jul 2021 13:32:12 GMT
- Title: Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse
- Authors: Yihong Yang, Sheng Ding, Yuwen Liu, Shunmei Meng, Xiaoxiao Chi, Rui
Ma, Chao Yan
- Abstract summary: Edge computing enabled smart greenhouse is a representative application of Internet of Things technology.
Traditional anomaly detection algorithms have not properly considered the inherent characteristics of data stream produced by wireless sensor.
- Score: 5.716360276016705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge computing enabled smart greenhouse is a representative application of
Internet of Things technology, which can monitor the environmental information
in real time and employ the information to contribute to intelligent
decision-making. In the process, anomaly detection for wireless sensor data
plays an important role. However, traditional anomaly detection algorithms
originally designed for anomaly detection in static data have not properly
considered the inherent characteristics of data stream produced by wireless
sensor such as infiniteness, correlations and concept drift, which may pose a
considerable challenge on anomaly detection based on data stream, and lead to
low detection accuracy and efficiency. First, data stream usually generates
quickly which means that it is infinite and enormous, so any traditional
off-line anomaly detection algorithm that attempts to store the whole dataset
or to scan the dataset multiple times for anomaly detection will run out of
memory space. Second, there exist correlations among different data streams,
which traditional algorithms hardly consider. Third, the underlying data
generation process or data distribution may change over time. Thus, traditional
anomaly detection algorithms with no model update will lose their effects.
Considering these issues, a novel method (called DLSHiForest) on basis of
Locality-Sensitive Hashing and time window technique in this paper is proposed
to solve these problems while achieving accurate and efficient detection.
Comprehensive experiments are executed using real-world agricultural greenhouse
dataset to demonstrate the feasibility of our approach. Experimental results
show that our proposal is practicable in addressing challenges of traditional
anomaly detection while ensuring accuracy and efficiency.
Related papers
- DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
We present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection)
It combines DBSCAN and learning-based anomaly detection.
It is shown to reliably detect different types of anomalies in both large and complex datasets.
arXiv Detail & Related papers (2024-05-13T13:47:15Z) - Anomaly Detection in Power Grids via Context-Agnostic Learning [4.865842426618145]
Given time-series measurement values coming from a fixed set of sensors on the grid, can we identify anomalies in the network topology or measurement data?
Recent data-driven ML techniques have shown promise by using a combination of current and historical data for anomaly detection.
We propose a novel context-aware anomaly detection algorithm, GridCAL, that considers the effect of regular topology and load/generation changes.
arXiv Detail & Related papers (2024-04-11T16:37:01Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism.
With "dirty" data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training.
arXiv Detail & Related papers (2022-06-08T19:39:51Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Zero-bias Deep Learning Enabled Quick and Reliable Abnormality Detection
in IoT [18.474662677341012]
This paper integrates zero-bias DNN and Quickest Event Detection algorithms.
It provides a holistic framework for quick and reliable detection of both abnormalities and time-dependent abnormal events.
We demonstrate the effectiveness of the framework using both massive signal records from real-world aviation communication systems and simulated data.
arXiv Detail & Related papers (2021-04-08T03:31:50Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.