Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
- URL: http://arxiv.org/abs/2504.18346v1
- Date: Fri, 25 Apr 2025 13:34:40 GMT
- Title: Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
- Authors: Toghrul Abbasli, Kentaroh Toyoda, Yuan Wang, Leon Witt, Muhammad Asif Ali, Yukai Miao, Dan Li, Qingsong Wei,
- Abstract summary: Large Language Models (LLMs) have been transformative across many domains.<n>Uncertainty Quantification (UQ) to measure uncertainty and employed calibration techniques to address misalignment between uncertainty and accuracy.<n>This survey is the first dedicated study to review the calibration methods and relevant metrics for LLMs.
- Score: 11.856357456956351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been transformative across many domains. However, hallucination -- confidently outputting incorrect information -- remains one of the leading challenges for LLMs. This raises the question of how to accurately assess and quantify the uncertainty of LLMs. Extensive literature on traditional models has explored Uncertainty Quantification (UQ) to measure uncertainty and employed calibration techniques to address the misalignment between uncertainty and accuracy. While some of these methods have been adapted for LLMs, the literature lacks an in-depth analysis of their effectiveness and does not offer a comprehensive benchmark to enable insightful comparison among existing solutions. In this work, we fill this gap via a systematic survey of representative prior works on UQ and calibration for LLMs and introduce a rigorous benchmark. Using two widely used reliability datasets, we empirically evaluate six related methods, which justify the significant findings of our review. Finally, we provide outlooks for key future directions and outline open challenges. To the best of our knowledge, this survey is the first dedicated study to review the calibration methods and relevant metrics for LLMs.
Related papers
- An Empirical Analysis of Uncertainty in Large Language Model Evaluations [28.297464655099034]
We conduct experiments involving 9 widely used LLM evaluators across 2 different evaluation settings.
We pinpoint that LLM evaluators exhibit varying uncertainty based on model families and sizes.
We find that employing special prompting strategies, whether during inference or post-training, can alleviate evaluation uncertainty to some extent.
arXiv Detail & Related papers (2025-02-15T07:45:20Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCH is a benchmark for evaluating large language models.
It includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities.
We also evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding.
arXiv Detail & Related papers (2024-06-18T16:50:38Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
We study the problem of uncertainty estimation and calibration for LLMs.
We propose a supervised approach that leverages labeled datasets to estimate the uncertainty in LLMs' responses.
Our method is easy to implement and adaptable to different levels of model accessibility including black box, grey box, and white box.
arXiv Detail & Related papers (2024-04-24T17:10:35Z) - Evaluation and Improvement of Fault Detection for Large Language Models [30.760472387136954]
This paper investigates the effectiveness of existing fault detection methods for large language models (LLMs)
We propose textbfMuCS, a prompt textbfMutation-based prediction textbfConfidence textbfSmoothing framework to boost the fault detection capability of existing methods.
arXiv Detail & Related papers (2024-04-14T07:06:12Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
The proliferation of open-source Large Language Models (LLMs) has highlighted the urgent need for comprehensive evaluation methods.
We introduce a new benchmarking approach for LLMs that integrates uncertainty quantification.
Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs.
arXiv Detail & Related papers (2024-01-23T14:29:17Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains.
Despite their impressive performance, they can be unreliable due to factual errors in their generations.
Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations.
arXiv Detail & Related papers (2023-11-14T16:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.