Pushing the boundary on Natural Language Inference
- URL: http://arxiv.org/abs/2504.18376v1
- Date: Fri, 25 Apr 2025 14:20:57 GMT
- Title: Pushing the boundary on Natural Language Inference
- Authors: Pablo Miralles-González, Javier Huertas-Tato, Alejandro Martín, David Camacho,
- Abstract summary: Natural Language Inference (NLI) is a central task in natural language understanding with applications in fact-checking, question answering and information retrieval.<n>Despite its importance, current NLI systems heavily rely on learning with limiting artifacts and biases, inference and real-world applicability.<n>This work provides a framework for building robust NLI systems without sacrificing quality or real-world applicability.
- Score: 49.15148871877941
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Natural Language Inference (NLI) is a central task in natural language understanding with applications in fact-checking, question answering, and information retrieval. Despite its importance, current NLI systems heavily rely on supervised learning with datasets that often contain annotation artifacts and biases, limiting generalization and real-world applicability. In this work, we apply a reinforcement learning-based approach using Group Relative Policy Optimization (GRPO) for Chain-of-Thought (CoT) learning in NLI, eliminating the need for labeled rationales and enabling this type of training on more challenging datasets such as ANLI. We fine-tune 7B, 14B, and 32B language models using parameter-efficient techniques (LoRA and QLoRA), demonstrating strong performance across standard and adversarial NLI benchmarks. Our 32B AWQ-quantized model surpasses state-of-the-art results on 7 out of 11 adversarial sets$\unicode{x2013}$or on all of them considering our replication$\unicode{x2013}$within a 22GB memory footprint, showing that robust reasoning can be retained under aggressive quantization. This work provides a scalable and practical framework for building robust NLI systems without sacrificing inference quality.
Related papers
- Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
We cast the spotlight on the underexplored task of Natural Language Inference (NLI)
We validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation.
We research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models.
arXiv Detail & Related papers (2024-09-11T17:09:49Z) - Enhancing Natural Language Inference Performance with Knowledge Graph for COVID-19 Automated Fact-Checking in Indonesian Language [2.0653921521788883]
This study uses a Knowledge Graph (KG) as external knowledge to enhance NLI performance for automated COVID-19 fact-checking in the Indonesian language.
Our study demonstrates that incorporating KGs can significantly improve NLI performance in fact-checking, achieving the best accuracy of 0,8616.
arXiv Detail & Related papers (2024-08-22T14:27:47Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.<n>Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)<n>We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Multi-Scales Data Augmentation Approach In Natural Language Inference
For Artifacts Mitigation And Pre-Trained Model Optimization [0.0]
We provide a variety of techniques for analyzing and locating dataset artifacts inside the crowdsourced Stanford Natural Language Inference corpus.
To mitigate dataset artifacts, we employ a unique multi-scale data augmentation technique with two distinct frameworks.
Our combination method enhances our model's resistance to perturbation testing, enabling it to continuously outperform the pre-trained baseline.
arXiv Detail & Related papers (2022-12-16T23:37:44Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
Natural Language Inference (NLI) is a growingly essential task in natural language understanding.
Here we propose a multi-level supervised contrastive learning framework named MultiSCL for low-resource natural language inference.
arXiv Detail & Related papers (2022-05-31T05:54:18Z) - Exploring Transitivity in Neural NLI Models through Veridicality [39.845425535943534]
We focus on the transitivity of inference relations, a fundamental property for systematically drawing inferences.
A model capturing transitivity can compose basic inference patterns and draw new inferences.
We find that current NLI models do not perform consistently well on transitivity inference tasks.
arXiv Detail & Related papers (2021-01-26T11:18:35Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.